skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Constraints on the optical depth of galaxy groups and clusters

Abstract

Here, future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel'dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the average $${\tau }_{500}$$ (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3]
  1. Argonne National Lab. (ANL), Lemont, IL (United States); The Univ. of Chicago, Chicago, IL (United States)
  2. Yale Univ., New Haven, CT (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); National Aeronautic and Space Administration (NASA); USDOE Office of Science (SC), National Energy Research Scientific Computing Center (NERSC)
OSTI Identifier:
1366482
Grant/Contract Number:
AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 837; Journal Issue: 2; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmology: observations; cosmology: theory; galaxies: clusters: intracluster medium; galaxies: groups: general; methods: statistical; X-rays: galaxies: clusters

Citation Formats

Flender, Samuel, Nagai, Daisuke, and McDonald, Michael. Constraints on the optical depth of galaxy groups and clusters. United States: N. p., 2017. Web. doi:10.3847/1538-4357/aa60bf.
Flender, Samuel, Nagai, Daisuke, & McDonald, Michael. Constraints on the optical depth of galaxy groups and clusters. United States. doi:10.3847/1538-4357/aa60bf.
Flender, Samuel, Nagai, Daisuke, and McDonald, Michael. Fri . "Constraints on the optical depth of galaxy groups and clusters". United States. doi:10.3847/1538-4357/aa60bf. https://www.osti.gov/servlets/purl/1366482.
@article{osti_1366482,
title = {Constraints on the optical depth of galaxy groups and clusters},
author = {Flender, Samuel and Nagai, Daisuke and McDonald, Michael},
abstractNote = {Here, future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel'dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the average ${\tau }_{500}$ (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.},
doi = {10.3847/1538-4357/aa60bf},
journal = {The Astrophysical Journal (Online)},
number = 2,
volume = 837,
place = {United States},
year = {Fri Mar 10 00:00:00 EST 2017},
month = {Fri Mar 10 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3works
Citation information provided by
Web of Science

Save / Share:
  • We present an analysis of stellar populations and evolutionary history of galaxies in three similarly rich galaxy clusters MS0451.6-0305 (z = 0.54), RXJ0152.7-1357 (z = 0.83), and RXJ1226.9+3332 (z = 0.89). Our analysis is based on high signal-to-noise ground-based optical spectroscopy and Hubble Space Telescope imaging for a total of 17-34 members in each cluster. Using the dynamical masses together with the effective radii and the velocity dispersions, we find no indication of evolution of sizes or velocity dispersions with redshift at a given galaxy mass. We establish the Fundamental Plane (FP) and scaling relations between absorption line indices andmore » velocity dispersions. We confirm that the FP is steeper at z Almost-Equal-To 0.86 compared to the low-redshift FP, indicating that under the assumption of passive evolution the formation redshift, z{sub form}, depends on the galaxy velocity dispersion (or alternatively mass). At a velocity dispersion of {sigma} = 125 km s{sup -1} (Mass = 10{sup 10.55} M{sub Sun }) we find z{sub form} = 1.24 {+-} 0.05, while at {sigma} = 225 km s{sup -1} (Mass = 10{sup 11.36} M{sub Sun }) the formation redshift is z{sub form} = 1.95{sup +0.3}{sub -0.2}, for a Salpeter initial mass function. The three clusters follow similar scaling relations between absorption line indices and velocity dispersions as those found for low-redshift galaxies. The zero point offsets for the Balmer lines depend on cluster redshifts. However, the offsets indicate a slower evolution, and therefore higher formation redshift, than the zero point differences found from the FP, if interpreting the data using a passive evolution model. Specifically, the strength of the higher order Balmer lines H{delta} and H{gamma} implies z{sub form} > 2.8. The scaling relations for the metal indices in general show small and in some cases insignificant zero point offsets, favoring high formation redshifts for a passive evolution model. Based on the absorption line indices and recent stellar population models from Thomas et al., we find that MS0451.6-0305 has a mean metallicity [M/H] approximately 0.2 dex below that of the other clusters and our low-redshift sample. We confirm our previous result that RXJ0152.7-1357 has a mean abundance ratio [{alpha}/Fe] approximately 0.3 dex higher than that of the other clusters. The differences in [M/H] and [{alpha}/Fe] between the high-redshift clusters and the low-redshift sample are inconsistent with a passive evolution scenario for early-type cluster galaxies over the redshift interval studied. Low-level star formation may be able to bring the metallicity of MS0451.6-0305 in agreement with the low-redshift sample, while we speculate whether galaxy mergers can lead to sufficiently large changes in the abundance ratios for the RXJ0152.7-1357 galaxies to allow them to reach the low-redshift sample values in the time available.« less
  • Many approaches to obtaining cosmological constraints rely on the connection between galaxies and dark matter. However, the distribution of galaxies is dependent on their formation and evolution as well as on the cosmological model, and galaxy formation is still not a well-constrained process. Thus, methods that probe cosmology using galaxies as tracers for dark matter must be able to accurately estimate the cosmological parameters. This can be done without knowing details of galaxy formation a priori as long as the galaxies are well represented by a halo occupation distribution (HOD). We apply this reasoning to the method of obtaining Ωmore » {sub m} and σ{sub 8} from galaxy clustering combined with the mass-to-number ratio of galaxy clusters. To test the sensitivity of this method to variations due to galaxy formation, we consider several different models applied to the same cosmological dark matter simulation. The cosmological parameters are then estimated using the observables in each model, marginalizing over the parameters of the HOD. We find that for models where the galaxies can be well represented by a parameterized HOD, this method can successfully extract the desired cosmological parameters for a wide range of galaxy formation prescriptions.« less
  • We place constraints on the average density ({Omega}{sub m}) and clustering amplitude ({sigma}{sub 8}) of matter using a combination of two measurements from the Sloan Digital Sky Survey: the galaxy two-point correlation function, w{sub p} (r{sub p} ), and the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to cluster M/L ratios. Our w{sub p} (r{sub p} ) measurements are obtained from DR7 while the sample of clusters is the maxBCG sample, with cluster masses derived from weak gravitational lensing. We construct nonlinear galaxy bias models using the Halo Occupation Distribution (HOD) to fit both w{sub p} (r{sub p} ) andmore » M/N for different cosmological parameters. HOD models that match the same two-point clustering predict different numbers of galaxies in massive halos when {Omega}{sub m} or {sigma}{sub 8} is varied, thereby breaking the degeneracy between cosmology and bias. We demonstrate that this technique yields constraints that are consistent and competitive with current results from cluster abundance studies, without the use of abundance information. Using w{sub p} (r{sub p} ) and M/N alone, we find {Omega}{sup 0.5}{sub m}{sigma}{sub 8} = 0.465 {+-} 0.026, with individual constraints of {Omega}{sub m} = 0.29 {+-} 0.03 and {sigma}{sub 8} = 0.85 {+-} 0.06. Combined with current cosmic microwave background data, these constraints are {Omega}{sub m} = 0.290 {+-} 0.016 and {sigma}{sub 8} = 0.826 {+-} 0.020. All errors are 1{sigma}. The systematic uncertainties that the M/N technique are most sensitive to are the amplitude of the bias function of dark matter halos and the possibility of redshift evolution between the SDSS Main sample and the maxBCG cluster sample. Our derived constraints are insensitive to the current level of uncertainties in the halo mass function and in the mass-richness relation of clusters and its scatter, making the M/N technique complementary to cluster abundances as a method for constraining cosmology with future galaxy surveys.« less
  • The Einstein imaging proportional counter observations of the poor cluster of galaxies centered on the radio galaxy Hydra A are examined. From the surface brightness profile, it is found that the X-ray-emitting gas in the Hydra A cluster must be condensing out of the intracluster medium at a rate of 600 solar masses/yr. This is one of the largest mass deposition rates observed in a cluster of galaxies. The ratio of gas mass to stellar mass is compared for a variety of systems, showing that this ratio correlates with the gas temperature. 55 refs.