skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Zonal Flows and Turbulence in Fluids and Plasmas

Thesis/Dissertation ·
OSTI ID:1365828
ORCiD logo [1]
  1. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences

In geophysical and plasma contexts, zonal flows are well known to arise out of turbulence. We elucidate the transition from statistically homogeneous turbulence without zonal flows to statistically inhomogeneous turbulence with steady zonal flows. Starting from the Hasegawa--Mima equation, we employ both the quasilinear approximation and a statistical average, which retains a great deal of the qualitative behavior of the full system. Within the resulting framework known as CE2, we extend recent understanding of the symmetry-breaking `zonostrophic instability'. Zonostrophic instability can be understood in a very general way as the instability of some turbulent background spectrum to a zonally symmetric coherent mode. As a special case, the background spectrum can consist of only a single mode. We find that in this case the dispersion relation of zonostrophic instability from the CE2 formalism reduces exactly to that of the 4-mode truncation of generalized modulational instability. We then show that zonal flows constitute pattern formation amid a turbulent bath. Zonostrophic instability is an example of a Type Is instability of pattern-forming systems. The broken symmetry is statistical homogeneity. Near the bifurcation point, the slow dynamics of CE2 are governed by a well-known amplitude equation, the real Ginzburg-Landau equation. The important features of this amplitude equation, and therefore of the CE2 system, are multiple. First, the zonal flow wavelength is not unique. In an idealized, infinite system, there is a continuous band of zonal flow wavelengths that allow a nonlinear equilibrium. Second, of these wavelengths, only those within a smaller subband are stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets. These behaviors are shown numerically to hold in the CE2 system, and we calculate a stability diagram. The stability diagram is in agreement with direct numerical simulations of the quasilinear system. The use of statistically-averaged equations and the pattern formation methodology provide a path forward for further systematic investigations of zonal flows and their interactions with turbulence.

Research Organization:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
DOE Contract Number:
AC02-09CH11466
OSTI ID:
1365828
Country of Publication:
United States
Language:
English

Similar Records

Zonal flow as pattern formation
Journal Article · Tue Oct 15 00:00:00 EDT 2013 · Physics of Plasmas · OSTI ID:1365828

On the structure of the drifton phase space and its relation to the Rayleigh–Kuo criterion of the zonal-flow stability
Journal Article · Mon Jul 23 00:00:00 EDT 2018 · Physics of Plasmas · OSTI ID:1365828

Nonlinear saturation and oscillations of collisionless zonal flows
Dataset · Wed May 01 00:00:00 EDT 2019 · OSTI ID:1365828