skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Mechanistic Source Term Calculation for a Metal Fuel Sodium Fast Reactor

Abstract

A mechanistic source term (MST) calculation attempts to realistically assess the transport and release of radionuclides from a reactor system to the environment during a specific accident sequence. The U.S. Nuclear Regulatory Commission (NRC) has repeatedly stated its expectation that advanced reactor vendors will utilize an MST during the U.S. reactor licensing process. As part of a project to examine possible impediments to sodium fast reactor (SFR) licensing in the U.S., an analysis was conducted regarding the current capabilities to perform an MST for a metal fuel SFR. The purpose of the project was to identify and prioritize any gaps in current computational tools, and the associated database, for the accurate assessment of an MST. The results of the study demonstrate that an SFR MST is possible with current tools and data, but several gaps exist that may lead to possibly unacceptable levels of uncertainty, depending on the goals of the MST analysis.

Authors:
; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy
OSTI Identifier:
1365801
DOE Contract Number:
AC02-06CH11357
Resource Type:
Conference
Resource Relation:
Conference: 2017 International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17), 06/26/17 - 06/29/17, Yekaterinburg, RU
Country of Publication:
United States
Language:
English

Citation Formats

Grabaskas, David, Bucknor, Matthew, and Jerden, James. A Mechanistic Source Term Calculation for a Metal Fuel Sodium Fast Reactor. United States: N. p., 2017. Web.
Grabaskas, David, Bucknor, Matthew, & Jerden, James. A Mechanistic Source Term Calculation for a Metal Fuel Sodium Fast Reactor. United States.
Grabaskas, David, Bucknor, Matthew, and Jerden, James. 2017. "A Mechanistic Source Term Calculation for a Metal Fuel Sodium Fast Reactor". United States. doi:. https://www.osti.gov/servlets/purl/1365801.
@article{osti_1365801,
title = {A Mechanistic Source Term Calculation for a Metal Fuel Sodium Fast Reactor},
author = {Grabaskas, David and Bucknor, Matthew and Jerden, James},
abstractNote = {A mechanistic source term (MST) calculation attempts to realistically assess the transport and release of radionuclides from a reactor system to the environment during a specific accident sequence. The U.S. Nuclear Regulatory Commission (NRC) has repeatedly stated its expectation that advanced reactor vendors will utilize an MST during the U.S. reactor licensing process. As part of a project to examine possible impediments to sodium fast reactor (SFR) licensing in the U.S., an analysis was conducted regarding the current capabilities to perform an MST for a metal fuel SFR. The purpose of the project was to identify and prioritize any gaps in current computational tools, and the associated database, for the accurate assessment of an MST. The results of the study demonstrate that an SFR MST is possible with current tools and data, but several gaps exist that may lead to possibly unacceptable levels of uncertainty, depending on the goals of the MST analysis.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 6
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish releasemore » fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.« less
  • A vital component of the U.S. reactor licensing process is an integrated safety analysis in which a source term representing the release of radionuclides during normal operation and accident sequences is analyzed. Historically, source term analyses have utilized bounding, deterministic assumptions regarding radionuclide release. However, advancements in technical capabilities and the knowledge state have enabled the development of more realistic and best-estimate retention and release models such that a mechanistic source term assessment can be expected to be a required component of future licensing of advanced reactors. Recently, as part of a Regulatory Technology Development Plan effort for sodium cooledmore » fast reactors (SFRs), Argonne National Laboratory has investigated the current state of knowledge of potential source terms in an SFR via an extensive review of previous domestic experiments, accidents, and operation. As part of this work, the significant sources and transport processes of radionuclides in an SFR have been identified and characterized. This effort examines all stages of release and source term evolution, beginning with release from the fuel pin and ending with retention in containment. Radionuclide sources considered in this effort include releases originating both in-vessel (e.g. in-core fuel, primary sodium, cover gas cleanup system, etc.) and ex-vessel (e.g. spent fuel storage, handling, and movement). Releases resulting from a primary sodium fire are also considered as a potential source. For each release group, dominant transport phenomena are identified and qualitatively discussed. The key product of this effort was the development of concise, inclusive diagrams that illustrate the release and retention mechanisms at a high level, where unique schematics have been developed for in-vessel, ex-vessel and sodium fire releases. This review effort has also found that despite the substantial range of phenomena affecting radionuclide release, the current state of knowledge is extensive, and in most areas may be sufficient. Several knowledge gaps were identified, such as uncertainty in release from molten fuel and availability of thermodynamic data for lanthanides and actinides in liquid sodium. However, the overall findings suggest that high retention rates can be expected within the fuel and primary sodium for all radionuclides other than noble gases.« less
  • The overall objective of the SFR Regulatory Technology Development Plan (RTDP) effort is to identify and address potential impediments to the SFR regulatory licensing process. In FY14, an analysis by Argonne identified the development of an SFR-specific MST methodology as an existing licensing gap with high regulatory importance and a potentially long lead-time to closure. This work was followed by an initial examination of the current state-of-knowledge regarding SFR source term development (ANLART-3), which reported several potential gaps. Among these were the potential inadequacies of current computational tools to properly model and assess the transport and retention of radionuclides duringmore » a metal fuel pool-type SFR core damage incident. The objective of the current work is to determine the adequacy of existing computational tools, and the associated knowledge database, for the calculation of an SFR MST. To accomplish this task, a trial MST calculation will be performed using available computational tools to establish their limitations with regard to relevant radionuclide release/retention/transport phenomena. The application of existing modeling tools will provide a definitive test to assess their suitability for an SFR MST calculation, while also identifying potential gaps in the current knowledge base and providing insight into open issues regarding regulatory criteria/requirements. The findings of this analysis will assist in determining future research and development needs.« less
  • The potential release of radioactive material during a plant incident, referred to as the source term, is a vital design metric and will be a major focus of advanced reactor licensing. The U.S. Nuclear Regulatory Commission has stated an expectation for advanced reactor vendors to present a mechanistic assessment of the potential source term in their license applications. The mechanistic source term presents an opportunity for vendors to realistically assess the radiological consequences of an incident, and may allow reduced emergency planning zones and smaller plant sites. However, the development of a mechanistic source term for advanced reactors is notmore » without challenges, as there are often numerous phenomena impacting the transportation and retention of radionuclides. This project sought to evaluate U.S. capabilities regarding the mechanistic assessment of radionuclide release from core damage incidents at metal fueled, pool-type sodium fast reactors (SFRs). The purpose of the analysis was to identify, and prioritize, any gaps regarding computational tools or data necessary for the modeling of radionuclide transport and retention phenomena. To accomplish this task, a parallel-path analysis approach was utilized. One path, led by Argonne and Sandia National Laboratories, sought to perform a mechanistic source term assessment using available codes, data, and models, with the goal to identify gaps in the current knowledge base. The second path, performed by an independent contractor, performed sensitivity analyses to determine the importance of particular radionuclides and transport phenomena in regards to offsite consequences. The results of the two pathways were combined to prioritize gaps in current capabilities.« less
  • Abstract not provided.