skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Wave-particle interactions in nonstationary plasma

Abstract

Waves have proven to be an immensely useful tool for manipulating magnetically confined fusion plasmas. Our sophisticated understanding of the physics of waves and their interactions with charged particles in such plasmas is aided by the fact that the waves often can be treated as perturbations of an essentially stationary background, simplifying their mathematical treatment. On the other hand, despite the rapid, ongoing advancement of the world's most sophisticated plasma compression experiments, such as NIF (LLNL) and Z (SNL), the phenomenology of wave-particle interactions in the sort of nonstationary plasma environments exemplified by these experiments has gone relatively unexplored. In plasmas undergoing compression, expansion, ionization, and recombination, embedded waves can have very unusual and possibly useful properties. The introduction of explicit time-dependence into some classic problems in plasma wave physics has revealed the nature in which nonstationary processes impact all stages of a wave's lifetime, including its undamped linear and nonlinear dynamics as well as its collisionless and collisional damping. A number of new insights are revealed, including the discovery of an induced, switch-like collisionless damping mechanism capable of producing prescribed bursts of heat, current, magnetic field energy, and/or voltage in time-evolving plasma; a novel method for optimizing plasma-based accelerationmore » of particle beams; enhanced understanding of the effect of waves on plasma compressibility; and the first numerical confirmation of a new, transparent analytical theory of nonlinear wave dynamics. To describe numerically all these effects, novel particle-in-cell simulations were developed. The findings not only stand to expand on the basic physics of waves in plasmas, but they also point toward potentially beneficial applications in the laboratory.« less

Authors:
 [1]
  1. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
Contributing Org.:
Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences. Program in Plasma Physics
OSTI Identifier:
1365794
DOE Contract Number:  
AC02-09CH11466
Resource Type:
Thesis/Dissertation
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; nonlinear particle PIC plasma simulation wave

Citation Formats

Schmit, Paul Frederic. Wave-particle interactions in nonstationary plasma. United States: N. p., 2012. Web.
Schmit, Paul Frederic. Wave-particle interactions in nonstationary plasma. United States.
Schmit, Paul Frederic. Thu . "Wave-particle interactions in nonstationary plasma". United States.
@article{osti_1365794,
title = {Wave-particle interactions in nonstationary plasma},
author = {Schmit, Paul Frederic},
abstractNote = {Waves have proven to be an immensely useful tool for manipulating magnetically confined fusion plasmas. Our sophisticated understanding of the physics of waves and their interactions with charged particles in such plasmas is aided by the fact that the waves often can be treated as perturbations of an essentially stationary background, simplifying their mathematical treatment. On the other hand, despite the rapid, ongoing advancement of the world's most sophisticated plasma compression experiments, such as NIF (LLNL) and Z (SNL), the phenomenology of wave-particle interactions in the sort of nonstationary plasma environments exemplified by these experiments has gone relatively unexplored. In plasmas undergoing compression, expansion, ionization, and recombination, embedded waves can have very unusual and possibly useful properties. The introduction of explicit time-dependence into some classic problems in plasma wave physics has revealed the nature in which nonstationary processes impact all stages of a wave's lifetime, including its undamped linear and nonlinear dynamics as well as its collisionless and collisional damping. A number of new insights are revealed, including the discovery of an induced, switch-like collisionless damping mechanism capable of producing prescribed bursts of heat, current, magnetic field energy, and/or voltage in time-evolving plasma; a novel method for optimizing plasma-based acceleration of particle beams; enhanced understanding of the effect of waves on plasma compressibility; and the first numerical confirmation of a new, transparent analytical theory of nonlinear wave dynamics. To describe numerically all these effects, novel particle-in-cell simulations were developed. The findings not only stand to expand on the basic physics of waves in plasmas, but they also point toward potentially beneficial applications in the laboratory.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2012},
month = {11}
}

Thesis/Dissertation:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this thesis or dissertation.

Save / Share: