skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: LUX-ZEPLIN (LZ) Technical Design Report

Abstract

In this Technical Design Report (TDR) we describe the LZ detector to be built at the Sanford Underground Research Facility (SURF). The LZ dark matter experiment is designed to achieve sensitivity to a WIMP-nucleon spin-independent cross section of three times ten to the negative forty-eighth square centimeters.

Authors:
 [1]
  1. Black Hills State Univ., Spearfish, SD (United States); et al.
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
The LUX-ZEPLIN Collaboration
OSTI Identifier:
1365579
Report Number(s):
LBNL-1007256; FERMILAB-TM-2653-AE-E-PPD; arXiv:1703.09144
1519429; TRN: US1701928
DOE Contract Number:
AC02-07CH11359
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; WIMPS; NONLUMINOUS MATTER; CROSS SECTIONS

Citation Formats

Mount, B. J. LUX-ZEPLIN (LZ) Technical Design Report. United States: N. p., 2017. Web. doi:10.2172/1365579.
Mount, B. J. LUX-ZEPLIN (LZ) Technical Design Report. United States. doi:10.2172/1365579.
Mount, B. J. Mon . "LUX-ZEPLIN (LZ) Technical Design Report". United States. doi:10.2172/1365579. https://www.osti.gov/servlets/purl/1365579.
@article{osti_1365579,
title = {LUX-ZEPLIN (LZ) Technical Design Report},
author = {Mount, B. J.},
abstractNote = {In this Technical Design Report (TDR) we describe the LZ detector to be built at the Sanford Underground Research Facility (SURF). The LZ dark matter experiment is designed to achieve sensitivity to a WIMP-nucleon spin-independent cross section of three times ten to the negative forty-eighth square centimeters.},
doi = {10.2172/1365579},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Mar 27 00:00:00 EDT 2017},
month = {Mon Mar 27 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • The design and performance of the LUX-ZEPLIN (LZ) detector is described as of March 2015 in this Conceptual Design Report. LZ is a second-generation dark-matter detector with the potential for unprecedented sensitivity to weakly interacting massive particles (WIMPs) of masses from a few GeV/c 2 to hundreds of TeV/c 2. With total liquid xenon mass of about 10 tonnes, LZ will be the most sensitive experiment for WIMPs in this mass region by the end of the decade. This report describes in detail the design of the LZ technical systems. Expected backgrounds are quantified and the performance of the experimentmore » is presented. The LZ detector will be located at the Sanford Underground Research Facility in South Dakota. The organization of the LZ Project and a summary of the expected cost and current schedule are given.« less
  • SLAC is helping to build and test the LUX-ZEPLIN or LZ detector, one of the biggest and most sensitive detectors ever designed to catch hypothetical dark matter particles known as WIMPs. Researchers at the Department of Energy’s SLAC National Accelerator Laboratory are on a quest to solve one of physics’ biggest mysteries: What exactly is dark matter – the invisible substance that accounts for 85 percent of all the matter in the universe but can’t be seen even with our most advanced scientific instruments? Most scientists believe it’s made of ghostly particles that rarely bump into their surroundings; that’s whymore » billions of dark matter particles might zip right through our bodies every second without us even noticing. Leading candidates for dark matter particles are WIMPs, or weakly interacting massive particles. Now SLAC is helping to build and test one of the biggest and most sensitive detectors ever designed to catch a WIMP – the LUX-ZEPLIN or LZ detector.« less
  • LUX-ZEPLIN (LZ) is a next generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with Weakly Interacting Massive Particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6 tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections abovemore » $$1.6 \times 10^{-48}$$ cm$$^{2}$$ for a 40 $$\mathrm{GeV}/c^{2}$$ mass WIMP. Additionally, a $$5\sigma$$ discovery potential is projected reaching cross sections below the existing and projected exclusion limits of similar experiments that are currently operating. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of $$2.7 \times 10^{-43}$$ cm$$^{2}$$ ($$8.1 \times 10^{-42}$$ cm$$^{2}$$) for a 40 $$\mathrm{GeV}/c^{2}$$ mass WIMP is expected. With construction well underway, LZ is on track for underground installation at SURF in 2019 and will start collecting data in 2020.« less
  • The objective of this program is to screen catalysts and determine operating conditions for maximizing gas and char production from the pyrolysis of coal gasification tars. The product yields from cracking a bituminous coal tar in a fixed-bed reactor were determined at various temperatures in the presence and absence of some packing materials. Synthetic zeolites, Linde LZ-Y82, Norton Zeolon 900-H (mordenite), Davison 13-X, and ultra-stable faujasite (H-Y), as well as a natural zeolite, chabazite, showed strong catalytic activity. In contrast, molecular sieves 5-A and natural erionite having smaller pore diameters were found to be much less active. Clay minerals suchmore » as kaolinite, montmorillonite and Kieselguhr exhibited catalytic activities which were similar to those of the zeolites with small pore sizes, but they were still far more effective than quartz particles. Based on the assumption of first-order kinetics, the activation energies for the tar conversion were evaluated for several packing materials. It was found that the zeolite LZ-Y82 was remarkably effective in converting tar to chars and gases in the temperature range of 350 to 500/sup 0/C, although this effectiveness decreased very rapidly with a continuous tar feed carried by an inert gas. Among the factors involved for catalytic effectiveness are (1) the effective pore size greater than about 0.7 nm (or 7A), (2) large internal surface area accessible to the tar vapor, and (3) large number of strongly acidic sites. 22 references, 6 figures, 22 tables.« less