skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Library of Advanced Materials for Engineering (LAME) 4.44.

Abstract

Accurate and efficient constitutive modeling remains a cornerstone issues for solid mechanics analysis. Over the years, the LAME advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to s ti ff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco) plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAME library in application, this effort seeks to document and verify the various models in the LAME library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to thismore » library and further expand the capabilities are presented.« less

Authors:
 [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1365507
Report Number(s):
SAND2017-4015
652540
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
96 KNOWLEDGE MANAGEMENT AND PRESERVATION

Citation Formats

Scherzinger, William M., and Lester, Brian T.. Library of Advanced Materials for Engineering (LAME) 4.44.. United States: N. p., 2017. Web. doi:10.2172/1365507.
Scherzinger, William M., & Lester, Brian T.. Library of Advanced Materials for Engineering (LAME) 4.44.. United States. doi:10.2172/1365507.
Scherzinger, William M., and Lester, Brian T.. Sat . "Library of Advanced Materials for Engineering (LAME) 4.44.". United States. doi:10.2172/1365507. https://www.osti.gov/servlets/purl/1365507.
@article{osti_1365507,
title = {Library of Advanced Materials for Engineering (LAME) 4.44.},
author = {Scherzinger, William M. and Lester, Brian T.},
abstractNote = {Accurate and efficient constitutive modeling remains a cornerstone issues for solid mechanics analysis. Over the years, the LAME advanced material model library has grown to address this challenge by implementing models capable of describing material systems spanning soft polymers to s ti ff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco) plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting implementation. Therefore, to enhance confidence and enable the utilization of the LAME library in application, this effort seeks to document and verify the various models in the LAME library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verification tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.},
doi = {10.2172/1365507},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Apr 01 00:00:00 EDT 2017},
month = {Sat Apr 01 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • Constitutive modeling is an important aspect of computational solid mechanics. Sandia National Laboratories has always had a considerable effort in the development of constitutive models for complex material behavior. However, for this development to be of use the models need to be implemented in our solid mechanics application codes. In support of this important role, the Library of Advanced Materials for Engineering (LAME) has been developed in Engineering Sciences. The library allows for simple implementation of constitutive models by model developers and access to these models by application codes. The library is written in C++ and has a very simplemore » object oriented programming structure. This report summarizes the current status of LAME.« less
  • Accurate and efficient constitutive modeling remains a cornerstone issues for solid mechanics analysis. Over the years, the LAME advanced material model library has grown to address this challenge by implement- ing models capable of describing material systems spanning soft polymers to stiff ceramics including both isotropic and anisotropic responses. Inelastic behaviors including (visco)plasticity, damage, and fracture have all incorporated for use in various analyses. This multitude of options and flexibility, however, comes at the cost of many capabilities, features, and responses and the ensuing complexity in the resulting imple- mentation. Therefore, to enhance confidence and enable the utilization of themore » LAME library in application, this effort seeks to document and verify the various models in the LAME library. Specifically, the broader strategy, organization, and interface of the library itself is first presented. The physical theory, numerical implementation, and user guide for a large set of models is then discussed. Importantly, a number of verifi- cation tests are performed with each model to not only have confidence in the model itself but also highlight some important response characteristics and features that may be of interest to end-users. Finally, in looking ahead to the future, approaches to add material models to this library and further expand the capabilities are presented.« less
  • Future energy systems will be required to fire low-grade fuels and meet higher energy conversion efficiencies than today's systems. The steam cycle used at present is-limited to a maximum temperature of 550C, because above that the stainless steel tubes deform and corrode excessively. However, to boost efficiency significantly, much higher working fluid temperatures are required. Although high-temperature alloys will suffice for the construction of these components in the near term, the greatest efficiency increases can only be reached with the use of advanced structural ceramics
  • No abstract available.