skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling cookoff of HMX based PBX explosives

Abstract

We have previously developed a PBX 9501 cookoff model for the plastic bonded explosive PBX 9501 consisting of 95 wt% octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoncine (HMX), 2.5 wt% Estane® 5703 (a polyurethane thermoplastic), and 2.5 wt% of a nitroplasticizer (NP): BDNPA/F, a 50/50 wt% eutectic mixture bis(2,2-dinitropropyl)-acetal (BDNPA) and bis(2,2-dinitropropyl)-formal (BDNPF). This fivestep model includes desorption of water, decomposition of the NP to form NO 2, reaction of the NO 2 with Estane and HMX, and decomposition of HMX [1]. This model has been successfully validated with data from six laboratories with scales ranging from 2 g to more than 2.5 kg of explosive. We have determined, that the PBX 9501 model can be used to predict cookoff of other plastic bonded explosives containing HMX and an inert binder, such as LX-04 consisting of 85 wt% HMX and 15 wt% Viton A (vinylidine fluoride/hexafluoropropylene copolymer), LX-07 (90 wt% HMX and 10 wt% Viton A), LX- 10-0 (95 wt% HMX and 5 wt% Viton A), and LX-14 consisting of 95.5 wt % HMX and 4.5 wt% Estane® 5702-F1 (a polyurethane thermoplastic). Normally our cookoff models are verified using Sandia’s Instrumented Thermal Initiation (SITI) experiment. However, SITI data for LX-04, LX-07, LX-10-0, and LX-14 are notmore » available at pressed density; although, some molding powder SITI data on LX-10-0 and LX-14 exists. Tarver and Tran [2] provide some one-dimensional time-to-explosion (ODTX) data for these explosives. The applicability of the PBX 9501 model to LX-04, LX-07, LX-10-0, AND LX-14 was made using this ODTX data [2]. The PBX 9501 model is applied to these other explosives by accounting for the correct amount of HMX in the explosive and limiting the NP reaction. We have found the PBX 9501 model to be useful for predicting the response of these PBXs to abnormal thermal environments such as fire.« less

Authors:
 [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1365471
Report Number(s):
SAND2017-3194R
652031
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE

Citation Formats

Hobbs, Michael L. Modeling cookoff of HMX based PBX explosives. United States: N. p., 2017. Web. doi:10.2172/1365471.
Hobbs, Michael L. Modeling cookoff of HMX based PBX explosives. United States. doi:10.2172/1365471.
Hobbs, Michael L. Wed . "Modeling cookoff of HMX based PBX explosives". United States. doi:10.2172/1365471. https://www.osti.gov/servlets/purl/1365471.
@article{osti_1365471,
title = {Modeling cookoff of HMX based PBX explosives},
author = {Hobbs, Michael L.},
abstractNote = {We have previously developed a PBX 9501 cookoff model for the plastic bonded explosive PBX 9501 consisting of 95 wt% octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoncine (HMX), 2.5 wt% Estane® 5703 (a polyurethane thermoplastic), and 2.5 wt% of a nitroplasticizer (NP): BDNPA/F, a 50/50 wt% eutectic mixture bis(2,2-dinitropropyl)-acetal (BDNPA) and bis(2,2-dinitropropyl)-formal (BDNPF). This fivestep model includes desorption of water, decomposition of the NP to form NO2, reaction of the NO2 with Estane and HMX, and decomposition of HMX [1]. This model has been successfully validated with data from six laboratories with scales ranging from 2 g to more than 2.5 kg of explosive. We have determined, that the PBX 9501 model can be used to predict cookoff of other plastic bonded explosives containing HMX and an inert binder, such as LX-04 consisting of 85 wt% HMX and 15 wt% Viton A (vinylidine fluoride/hexafluoropropylene copolymer), LX-07 (90 wt% HMX and 10 wt% Viton A), LX- 10-0 (95 wt% HMX and 5 wt% Viton A), and LX-14 consisting of 95.5 wt % HMX and 4.5 wt% Estane® 5702-F1 (a polyurethane thermoplastic). Normally our cookoff models are verified using Sandia’s Instrumented Thermal Initiation (SITI) experiment. However, SITI data for LX-04, LX-07, LX-10-0, and LX-14 are not available at pressed density; although, some molding powder SITI data on LX-10-0 and LX-14 exists. Tarver and Tran [2] provide some one-dimensional time-to-explosion (ODTX) data for these explosives. The applicability of the PBX 9501 model to LX-04, LX-07, LX-10-0, AND LX-14 was made using this ODTX data [2]. The PBX 9501 model is applied to these other explosives by accounting for the correct amount of HMX in the explosive and limiting the NP reaction. We have found the PBX 9501 model to be useful for predicting the response of these PBXs to abnormal thermal environments such as fire.},
doi = {10.2172/1365471},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2017},
month = {Wed Mar 01 00:00:00 EST 2017}
}

Technical Report:

Save / Share:
  • A series of experiments at Los Alamos National Laboratory explored the efficacy of ammonium hydroxide solutions in converting HMX (cyclotetramethylene-tetranitramine, or Octogen) and HMX-based explosives to nonenergetic, nonhazardous materials. When 80 g of explosive was converted in a reactor operating at 85 psig pressure at 140 C, the principal gaseous products were nitrous oxide (46% to 51%), nitrogen (22% to 32%), and ammonia (17% to 28%). Formate and hexamethylene-tetramine (hexamine) account for effectively 100% of the carbon-bearing aqueous species. Nitrate, nitrite, and acetate were present in the liquid in trace amounts. The process effectively treated molding powders of the plastic-bondedmore » explosives PBX 9501 (2.5% estane), LX-04 (15% viton), and PBX 9404 (3% nitrocellulose). Results were compared with those achieved using sodium hydroxide solutions at 150 C in a pressurized reactor.« less
  • Detonation wave profiles have been measured in several HMX based plastic bonded explosives including PBX9404, PBX9501, and EDC-37, as well as two HMX powders (coarse and fine) pressed to 65% of crystal density. The powders had 120 and 10 {micro}m average grain sizes, respectively. Planar detonations were produced by impacting the explosive with projectiles launched in a 72-mm bore gas gun. Impactors, impact velocity, and explosive thickness were chosen so that the run distance to detonation was always less than half the explosive thickness. For the high density plastic bonded explosives, particle velocity wave profiles were measured at an explosive/windowmore » interface using two VISAR interferometers. PMMA windows with vapor deposited aluminum mirrors were used for all experiments. Wave profiles for the powdered explosives were measured using magnetic particle velocity gauges. Estimates of the reaction zone parameters were obtained from the profiles using Hugoniots of the explosive and window.« less
  • The small-scale cookoff bomb test was developed by the Navy at China Lake as a method for evaluation of the violence of thermal decomposition of explosives and propellants. The UN {open_quotes}Recommendations on the Transport of Dangerous Goods - Tests and Criteria{close_quotes} (ST/SG/AC.10/11) have accepted the small-scale cookoff bomb test as a test for classification of a substance as an explosive (class 1 substance) for storage and shipment. The US Departments of Transportation and Defense have agreed to use the UN tests as US criteria for storage and shipment. The UN scheme is designed to assess the relative hazard of explosivesmore » so that an appropriate classification for transport can be made by the competent authority (DOT). Three thermal tests have been approved: the Koenen test, the internal ignition test and the small-scale cookoff bomb (SSCB) test. Lawrence Livermore National Laboratory has designed a dissolution work station for removal of the plastic bonded explosives (PBXs) LX-10-1 and PBX-9404 from two artillery fired atomic projectiles (AFAPs) using dimethyl sulfoxide (DMSO) as the solvent. The DOE Explosives Safety Manual allows up to 33% solutions of explosives to be handled as non-explosive in the laboratory and 25% solutions to be stored as non-explosives unless the explosive precipitates out. In order to ship solutions of LX-10-1 or PBX-9404 in DMSO on US highways for waste or recycling as non-explosives, these solutions must be approved for shipping by the DOT based on the results of UN test series 1. The compositions of LX-10-1 and PBX-9404 are given in Table 1. The shock sensitivity of solutions of these two plastic bonded explosives in dimethyl sulfoxide (DMSO) has been evaluated using the UN series 1 gap test for liquids as described in a previous report. The purpose of this paper is to present the results of the SSCB tests on pure DMSO and 25% PBX solutions in DMSO to assist in the classification of these solutions.« less