skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PNNL Fish Telemetry: Improving the Sustainability of Hydropower One Tag at a Time

Abstract

Evaluating the environmental impact of hydropower is critical to the growth, development, and maintenance of this vital energy source. Operators, developers, and regulators often turn to animal telemetry to measure the effect of dams on fish populations. PNNL’s tagging portfolio consists of a range of tags suitable for a variety of applications from active tags slightly larger than a grain of rice to larger tags that power themselves via a fish’s natural movement.

Publication Date:
Research Org.:
PNNL (Pacific Northwest National Laboratory (PNNL), Richland, WA (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1365394
Resource Type:
Multimedia
Country of Publication:
United States
Language:
English
Subject:
13 HYDRO ENERGY; HYDROPOWER; FISH TAGS; ACOUSTIC TELEMETRY TAGS; STURGEON; TURBINE

Citation Formats

None. PNNL Fish Telemetry: Improving the Sustainability of Hydropower One Tag at a Time. United States: N. p., 2017. Web.
None. PNNL Fish Telemetry: Improving the Sustainability of Hydropower One Tag at a Time. United States.
None. Wed . "PNNL Fish Telemetry: Improving the Sustainability of Hydropower One Tag at a Time". United States. doi:. https://www.osti.gov/servlets/purl/1365394.
@article{osti_1365394,
title = {PNNL Fish Telemetry: Improving the Sustainability of Hydropower One Tag at a Time},
author = {None},
abstractNote = {Evaluating the environmental impact of hydropower is critical to the growth, development, and maintenance of this vital energy source. Operators, developers, and regulators often turn to animal telemetry to measure the effect of dams on fish populations. PNNL’s tagging portfolio consists of a range of tags suitable for a variety of applications from active tags slightly larger than a grain of rice to larger tags that power themselves via a fish’s natural movement.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed May 17 00:00:00 EDT 2017},
month = {Wed May 17 00:00:00 EDT 2017}
}
  • Scientists from PNNL are testing a fish transportation system developed by Whooshh Innovations. The Whooshh system uses a flexible tube that works a bit like a vacuum, guiding fish over hydroelectric dams or other structures. Compared to methods used today, this system could save money while granting fish quicker, safer passage through dams and hatcheries.
  • DOE JGI's Alex Copeland on "DOE JGI Quality Metrics" and Michigan State University's C. Titus Brown on "Approaches to Scaling and Improving Metagenome Assembly" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.
  • In the age of precision cosmology the fundamental parameters of our world model are being measured to unprecedented accuracy. In particular, measurements of the cosmic microwave background radiation detail the state of the universe only 400,000 years after the big bang. Unfortunately, we have no direct observational evidence about the following few hundred million years, the so called dark ages. However, we do know from the composition of the highest redshift galaxies that it is there where the earliest and first galaxies are being formed. From a physics point of view these earliest times are much easier to understand andmore » model because the chemical composition of the early gas is simpler and the first galaxies are much smaller than the ones found nearby. The absence of strong magnetic fields, cosmic rays, dust grains and UV radiation fields clearly also helps. The first generation of structure formation is as such a problem extremely well suited for direct ab initio calculations using supercomputers. In this colloquium I will discuss the rich physics of the formation of the first objects as computed via ab initio Eulerian cosmological adaptive mesh refinement calculations. We find the first generation of stars to be massive and to form in isolation with mass between 30 and 300 times the mass of the sun. Remarkably the relevant mass scales can all be understood analytically from the microscopic properties of atomic and molecular hydrogen. The UV radiation from these stars photo-evaporates their parent clouds within their lifetimes contributing significantly to cosmological reionization. Their supernovae distribute the first heavy elements over thousands of light years and enrich the intergalactic medium. As we are beginning to illuminate these earliest phases of galaxy formation many new questions arise and become addressable with our novel numerical techniques. How and where are the earliest magnetic fields made? How do the first super-massive black holes form? When and how can the first planets form in the universe? Algorithmic breakthroughs and large supercomputers enable these studies. Hence I will close with discussing how the expanding computing infrastructure at SLAC and scientific visualization at the Schwob Computing and Information Center at the Fred Kavli building allow us to find answers to the fundamental questions about the beginning of structure in the universe.« less
  • A new field of scientific exploration - single molecule biophysics - is currently reshaping and redefining our understanding of the mechanochemistry of life. The development of laser-based optical traps, or 'optical tweezers,' has allowed for physiological assessments of such precision that bio-molecules can now be measured and studied one at a time. In this colloquium, Professor Block will present findings based on his group's construction of optical trapping instrumentation that has broken the nanometer barrier, allowing researchers to study single-molecule displacements on the Angstrom level. Focusing on RNA polymerase, the motor enzyme responsible for transcribing the genetic code contained inmore » DNA, Block's group has been able to measure, in real time, the motion of a single molecule of RNA polymerase as it moves from base to base along the DNA template.« less
  • Researchers at Berkeley Labs Molecular Foundry use an atomic force microscope to record this movie of a peptide being adsorbed to a crystal surface while two successive crystal steps interact, then progress beyond the peptide. The peptide temporarily slows the step before transferring up to the next atomic layer. The lattice pattern on the surface corresponds to the molecular structure of the underlying crystal.