skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cost Comparison in 2015 Dollars for Radioisotope Power Systems -- Cassini and Mars Science Laboratory

Abstract

Radioisotope power systems (RPSs) have enabled missions requiring reliable, long-lasting power in remote, harsh environments such as space since the early 1960s. Costs for RPSs are high, but are often misrepresented due to the complexity of space missions and inconsistent charging practices among the many and changing participant organizations over the years. This paper examines historical documentation associated with two past successful flight missions, each with a different RPS design, to provide a realistic cost basis for RPS production and deployment. The missions and their respective RPSs are Cassini, launched in 1997, that uses the general purpose heat source (GPHS) radioisotope thermoelectric generator (RTG), and Mars Science Laboratory (MSL), launched in 2011, that uses the multi-mission RTG (MMRTG). Actual costs in their respective years are discussed for each of the two RTG designs and the missions they enabled, and then present day values to 2015 are computed to compare the costs. Costs for this analysis were categorized into two areas: development of the specific RTG technology, and production and deployment of an RTG. This latter category includes material costs for the flight components (including Pu-238 and fine weave pierced fabric (FWPF)); manufacturing of flight components; assembly, testing, and transport ofmore » the flight RTG(s); ground operations involving the RTG(s) through launch; nuclear safety analyses for the launch and for the facilities housing the RTG(s) during all phases of ground operations; DOE’s support for NEPA analyses; and radiological contingency planning. This analysis results in a fairly similar 2015 normalized cost for the production and deployment of an RTG—approximately $118M for the GPHS-RTG and $109M for the MMRTG. In addition to these two successful flight missions, the costs for development of the MMRTG are included to serve as a future reference. Note that development costs included herein for the MMRTG do not include costs from NASA staff or facilities for their development efforts—they only include the amounts costed by DOE and DOE contractors. The 2015 value for MMRTG development is $83M. Both of the RPS types analyzed herein use the general purpose heat source (GPHS) module as the “heart of the RPS.” The estimates presented herein do not include development costs for the GPHS. These estimates also do not include the RPS infrastructure cost to maintain the facilities, equipment, and personnel necessary to enable the production of RPSs, except to the extent that the infrastructure is utilized during the production campaigns to provide RPSs for missions. It was not until after the Cassini mission that an RPS infrastructure funding structure was defined and funded separately from mission-specific elements. The information presented herein could allow for more accurate budget planning estimates for space missions being considered over the next decade and beyond.« less

Authors:
 [1];  [1];  [1];  [1]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1364515
Report Number(s):
INL/EXT-16-40218
TRN: US1702260
DOE Contract Number:
AC07-05ID14517
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
07 ISOTOPE AND RADIATION SOURCES; PLUTONIUM 238; POWER SYSTEMS; NASA; SPACE; THERMOELECTRIC GENERATORS; SAFETY ANALYSIS; RPS

Citation Formats

Werner, James Elmer, Johnson, Stephen Guy, Dwight, Carla Chelan, and Lively, Kelly Lynn. Cost Comparison in 2015 Dollars for Radioisotope Power Systems -- Cassini and Mars Science Laboratory. United States: N. p., 2016. Web. doi:10.2172/1364515.
Werner, James Elmer, Johnson, Stephen Guy, Dwight, Carla Chelan, & Lively, Kelly Lynn. Cost Comparison in 2015 Dollars for Radioisotope Power Systems -- Cassini and Mars Science Laboratory. United States. doi:10.2172/1364515.
Werner, James Elmer, Johnson, Stephen Guy, Dwight, Carla Chelan, and Lively, Kelly Lynn. 2016. "Cost Comparison in 2015 Dollars for Radioisotope Power Systems -- Cassini and Mars Science Laboratory". United States. doi:10.2172/1364515. https://www.osti.gov/servlets/purl/1364515.
@article{osti_1364515,
title = {Cost Comparison in 2015 Dollars for Radioisotope Power Systems -- Cassini and Mars Science Laboratory},
author = {Werner, James Elmer and Johnson, Stephen Guy and Dwight, Carla Chelan and Lively, Kelly Lynn},
abstractNote = {Radioisotope power systems (RPSs) have enabled missions requiring reliable, long-lasting power in remote, harsh environments such as space since the early 1960s. Costs for RPSs are high, but are often misrepresented due to the complexity of space missions and inconsistent charging practices among the many and changing participant organizations over the years. This paper examines historical documentation associated with two past successful flight missions, each with a different RPS design, to provide a realistic cost basis for RPS production and deployment. The missions and their respective RPSs are Cassini, launched in 1997, that uses the general purpose heat source (GPHS) radioisotope thermoelectric generator (RTG), and Mars Science Laboratory (MSL), launched in 2011, that uses the multi-mission RTG (MMRTG). Actual costs in their respective years are discussed for each of the two RTG designs and the missions they enabled, and then present day values to 2015 are computed to compare the costs. Costs for this analysis were categorized into two areas: development of the specific RTG technology, and production and deployment of an RTG. This latter category includes material costs for the flight components (including Pu-238 and fine weave pierced fabric (FWPF)); manufacturing of flight components; assembly, testing, and transport of the flight RTG(s); ground operations involving the RTG(s) through launch; nuclear safety analyses for the launch and for the facilities housing the RTG(s) during all phases of ground operations; DOE’s support for NEPA analyses; and radiological contingency planning. This analysis results in a fairly similar 2015 normalized cost for the production and deployment of an RTG—approximately $118M for the GPHS-RTG and $109M for the MMRTG. In addition to these two successful flight missions, the costs for development of the MMRTG are included to serve as a future reference. Note that development costs included herein for the MMRTG do not include costs from NASA staff or facilities for their development efforts—they only include the amounts costed by DOE and DOE contractors. The 2015 value for MMRTG development is $83M. Both of the RPS types analyzed herein use the general purpose heat source (GPHS) module as the “heart of the RPS.” The estimates presented herein do not include development costs for the GPHS. These estimates also do not include the RPS infrastructure cost to maintain the facilities, equipment, and personnel necessary to enable the production of RPSs, except to the extent that the infrastructure is utilized during the production campaigns to provide RPSs for missions. It was not until after the Cassini mission that an RPS infrastructure funding structure was defined and funded separately from mission-specific elements. The information presented herein could allow for more accurate budget planning estimates for space missions being considered over the next decade and beyond.},
doi = {10.2172/1364515},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 7
}

Technical Report:

Save / Share:
  • Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfillmore » its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.« less
  • The cost analysis of energy supplied by a facility over its life cycle is complicated by inflation and by discount rates. Neglect of inflation and improper use of discount rates have often rendered elaborate cost calculations meaningless and have added to the great confusion as to the merits of competing technologies. It is shown in this paper that three modes of energy-cost calculations can be clearly distinguished by the manner in which inflation is treated. Each mode has a well-defined discount rate and is used in conjunction with a well-defined set of input data. The then-current dollar mode of analysismore » has inflation internalized and yields a cost result measured in the sliding dollar, similar in nature to the home mortgage payment. The base-year dollar mode of analysis attempts to project the then-current dollar results to the year of decision (base year). The perpetual-constant dollar mode of analysis subtracts the inflation component from the market cost of money and from prices, such that all calculations can be performed without the influence of inflation. By invoking the principle of financial equivalence in cash-flow analysis, the three modes of calculation are shown to be the same with the exception of some small aberration introduced by taxation and depreciation practices. The proper use of each mode consistently results in a unique ranking of priorities when several energy alternatives are to be compared. For simplicity, only the most significant component of cost--the depreciable capital cost component--was selected to compare the three modes of calculations. A numerical example is provided for the cost comparison of several alternatives for supplying synthetic fuels.« less
  • The Department of Energy has assigned to Sandia National Laboratories the responsibility of producing a Safety Analysis Report (SAR) for the plutonium-dioxide fueled Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) proposed to be used in the Mars Science Laboratory (MSL) mission. The National Aeronautic and Space Administration (NASA) is anticipating a launch in fall of 2009, and the SAR will play a critical role in the launch approval process. As in past safety evaluations of MMRTG missions, a wide range of potential accident conditions differing widely in probability and seventy must be considered, and the resulting risk to the public will bemore » presented in the form of probability distribution functions of health effects in terms of latent cancer fatalities. The basic descriptions of accident cases will be provided by NASA in the MSL SAR Databook for the mission, and on the basis of these descriptions, Sandia will apply a variety of sophisticated computational simulation tools to evaluate the potential release of plutonium dioxide, its transport to human populations, and the consequent health effects. The first step in carrying out this project is to evaluate the existing computational analysis tools (computer codes) for suitability to the analysis and, when appropriate, to identify areas where modifications or improvements are warranted. The overall calculation of health risks can be divided into three levels of analysis. Level A involves detailed simulations of the interactions of the MMRTG or its components with the broad range of insults (e.g., shrapnel, blast waves, fires) posed by the various accident environments. There are a number of candidate codes for this level; they are typically high resolution computational simulation tools that capture details of each type of interaction and that can predict damage and plutonium dioxide release for a range of choices of controlling parameters. Level B utilizes these detailed results to study many thousands of possible event sequences and to build up a statistical representation of the releases for each accident case. A code to carry out this process will have to be developed or adapted from previous MMRTG missions. Finally, Level C translates the release (or ''source term'') information from Level B into public risk by applying models for atmospheric transport and the health consequences of exposure to the released plutonium dioxide. A number of candidate codes for this level of analysis are available. This report surveys the range of available codes and tools for each of these levels and makes recommendations for which choices are best for the MSL mission. It also identities areas where improvements to the codes are needed. In some cases a second tier of codes may be identified to provide supporting or clarifying insight about particular issues. The main focus of the methodology assessment is to identify a suite of computational tools that can produce a high quality SAR that can be successfully reviewed by external bodies (such as the Interagency Nuclear Safety Review Panel) on the schedule established by NASA and DOE.« less
  • This is a 220 page book with research and engineering highlights from the Advanced Photon Source at Argonne National Laboratory for the year 2015.