skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: BISON Investigation of the Effect of the Fuel- Cladding Contact Irregularities on the Peak Cladding Temperature and FCCI Observed in AFC-3A Rodlet 4

Abstract

The primary objective of this report is to document results of BISON analyses supporting Fuel Cycle Research and Development (FCRD) activities. Specifically, the present report seeks to provide explanation for the microstructural features observed during post irradiation examination of the helium-bonded annular U-10Zr fuel irradiated during the AFC-3A experiment. Post irradiation examination of the AFC-3A rodlet revealed microstructural features indicative of the fuel-cladding chemical interaction (FCCI) at the fuel-cladding interface. Presence of large voids was also observed in the same locations. BISON analyses were performed to examine stress and temperature profiles and to investigate possible correlation between the voids and FCCI. It was found that presence of the large voids lead to a formation of circumferential temperature gradients in the fuel that may have redirected migrating lanthanides to the locations where fuel and cladding are in contact. Resulting localized increase of lanthanide concentration is expected to accelerate FCCI. The results of this work provide important guidance to the post irradiation examination studies. Specifically, the hypothesis of lanthanides being redirected from the voids to the locations where the fuel and the cladding are in contact should be verified by conducting quantitative electron microscopy or Electron Probe Micro-Analyzer (EPMA). The results alsomore » highlight the need for computer models capable of simulating lanthanide diffusion in metallic fuel and establish a basis for validation of such models.« less

Authors:
 [1]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)
Publication Date:
Research Org.:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1364503
Report Number(s):
INL/EXT-16-40027
TRN: US1703361
DOE Contract Number:
AC07-05ID14517
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; CLADDING; FUELS; IRRADIATION; ELECTRON MICROPROBE ANALYSIS; POST-IRRADIATION EXAMINATION; FUEL CYCLE; BISON

Citation Formats

Medvedev, Pavel G. BISON Investigation of the Effect of the Fuel- Cladding Contact Irregularities on the Peak Cladding Temperature and FCCI Observed in AFC-3A Rodlet 4. United States: N. p., 2016. Web. doi:10.2172/1364503.
Medvedev, Pavel G. BISON Investigation of the Effect of the Fuel- Cladding Contact Irregularities on the Peak Cladding Temperature and FCCI Observed in AFC-3A Rodlet 4. United States. doi:10.2172/1364503.
Medvedev, Pavel G. 2016. "BISON Investigation of the Effect of the Fuel- Cladding Contact Irregularities on the Peak Cladding Temperature and FCCI Observed in AFC-3A Rodlet 4". United States. doi:10.2172/1364503. https://www.osti.gov/servlets/purl/1364503.
@article{osti_1364503,
title = {BISON Investigation of the Effect of the Fuel- Cladding Contact Irregularities on the Peak Cladding Temperature and FCCI Observed in AFC-3A Rodlet 4},
author = {Medvedev, Pavel G.},
abstractNote = {The primary objective of this report is to document results of BISON analyses supporting Fuel Cycle Research and Development (FCRD) activities. Specifically, the present report seeks to provide explanation for the microstructural features observed during post irradiation examination of the helium-bonded annular U-10Zr fuel irradiated during the AFC-3A experiment. Post irradiation examination of the AFC-3A rodlet revealed microstructural features indicative of the fuel-cladding chemical interaction (FCCI) at the fuel-cladding interface. Presence of large voids was also observed in the same locations. BISON analyses were performed to examine stress and temperature profiles and to investigate possible correlation between the voids and FCCI. It was found that presence of the large voids lead to a formation of circumferential temperature gradients in the fuel that may have redirected migrating lanthanides to the locations where fuel and cladding are in contact. Resulting localized increase of lanthanide concentration is expected to accelerate FCCI. The results of this work provide important guidance to the post irradiation examination studies. Specifically, the hypothesis of lanthanides being redirected from the voids to the locations where the fuel and the cladding are in contact should be verified by conducting quantitative electron microscopy or Electron Probe Micro-Analyzer (EPMA). The results also highlight the need for computer models capable of simulating lanthanide diffusion in metallic fuel and establish a basis for validation of such models.},
doi = {10.2172/1364503},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 9
}

Technical Report:

Save / Share:
  • The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium,more » zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.« less
  • Data from the Loss-of-Fluid Test (LOFT) Program help quantify the margin of safety inherent in pressurized water reactors during postulated loss-of-coolant accidents (LOCAs). As early as 1979, questions arose concerning the accuracy of LOFT fuel rod cladding temperature data during several large-break LOCA experiments. This report analyzes how well externally-mounted fuel rod cladding thermocouples in LOFT accurately reflected actual cladding surface temperature during large-break LOCA experiments. In particular, the validity of the apparent core-wide fuel rod cladding quench exhibited during blowdown in LOFT Experiments L2-2 and L2-3 is studied. Also addressed is the question of whether the externally-mounted thermocouples mightmore » have influenced cladding temperature. The analysis makes use of data and information from several sources, including later, similar LOFT Experiments in which fuel centerline temperature measurements were made, experiments in other facilities, and results from a detailed FRAP-T6 model of the LOFT fuel rod. The analysis shows that there can be a significant difference (referred to as bias) between the surface-mounted thermocouple reading and the actual cladding temperature, and that the magnitude of this bias depends on the rate of heat transfer between the fuel rod cladding and coolant. The results of the analysis demonstrate clearly that a core-wide cladding quench did occur in Experiments L2-2 and L2-3. Further, it is shown that, in terms of peak cladding temperature recording during LOFT large-break LOCA experiments, the mean bias is 11.4 {plus_minus} 16.2K (20.5 {plus_minus} 29.2{degrees} F). The best-estimate value of peak cladding temperature for LOFT LP-02-6 is 1,104.8 K. The best-estimate peak cladding temperature for LOFT LP-LB-1 is 1284.0 K.« less
  • Metallic fuels are proposed for use in advanced sodium cooled fast reactors. The experience basis for metallic fuels is extensive and includes development and qualification of fuels for the Experimental Breeder Reactor I, the Experimental Breeder Reactor II, FERMI-I, and the Fast Flux Test Facility (FFTF) reactors. Metallic fuels provide a number of advantages over other fuel types in terms of fabricability, performance, recyclability, and safety. Key to the performance of all nuclear fuel systems is the resistance to “breach” and subsequent release of fission products and fuel constituents to the primary coolant system of the nuclear power plant. Inmore » metallic fuel, the experience is that significant fuel-cladding chemical (FCCI) interaction occurs and becomes prevalent at high power-high temperature operation and ultimately leads to fuel pin breach and failure. Empirical relationships for metallic fuel pin failure have been developed from a large body of in-pile and out of pile research, development, and experimentation. It has been found that significant in-pile acceleration of the FCCI rate is experienced over similar condition out-of-pile experiments. The study of FCCI in metallic fuels has led to the quantification of in-pile failure rates to establish an empirical time and temperature dependent failure limit for fuel elements. Up until now the understanding of FCCI layer formation has been limited to data generated in EBR-II experiments. This dissertation provides new FCCI data extracted from the MFF-series of metallic fuel irradiations performed in the FFTF. These fuel assemblies contain valuable information on the formation of FCCI in metallic fuels at a variety of temperature and burnup conditions and in fuel with axial fuel height three times longer than EBR-II experiments. The longer fuel column in the FFTF and the fuel pins examined have significantly different flux, power, temperature, and FCCI profiles than that found in similar tests conducted in the EBR-II and study of the differences between the two fuel systems is critical for design of large advanced sodium cooled fast reactor systems. Comparing FCCI layer formation data between FFTF and EBR-II indicates that the same diffusion model can be used to represent the two systems when considering time, temperature, burnup history, and axial temperature and power profiles. This dissertation shows that FCCI formation peaks further below the top of the fuel column in FFTF experiments than has been observed in EBR-II experiments. The work provided in this dissertation will help forward the design of advanced metallic fuel systems for advanced sodium cooled fast reactors by allowing the prediction of FCCI layer formation in full length reactor designs. This will allow the accurate lifetime prediction of fuel performance capability for new advanced sodium cooled fast reactors with extended core designs.« less
  • SiC-based ceramic matrix composites (CMCs) [5–8] are being developed and evaluated internationally as potential LWR cladding options. These development activities include interests within both the DOE-NE LWR Sustainability (LWRS) Program and the DOE-NE Advanced Fuels Campaign. The LWRS Program considers SiC ceramic matrix composites (CMCs) as offering potentially revolutionary gains as a cladding material, with possible benefits including more efficient normal operating conditions and higher safety margins under accident conditions [9]. Within the Advanced Fuels Campaign, SiC-based composites are a candidate ATF cladding material that could achieve several goals, such as reducing the rates of heat and hydrogen generation duemore » to lower cladding oxidation rates in HT steam [10]. This work focuses on the application of SiC cladding as an ATF cladding material in PWRs, but these work efforts also support the general development and assessment of SiC as an LWR cladding material in a much broader sense.« less
  • In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling themore » integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and operating conditions used are based off the Peach Bottom BWR and design consideration was given to minimize the neutronic penalty of the FeCrAl cladding by changing fuel enrichment and cladding thickness. As this study progressed, systematic parametric analysis of the fuel and cladding creep responses were also performed.« less