skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Physics of spinning gases and plasmas

Abstract

Initially motivated by the problem of compression of spinning plasma in Z-pinch devices and related applications, the thesis explores a number of interesting smaller-scale problems related to physics of gas and plasma rotation. In particular, thermodynamics of ideal spinning gas is studied. It is found that rotation modifies the heat capacity of the gas and reduces the gas compressibility. It is also proposed that, by performing a series of measurement of external parameters of a spinning gas, one can infer the distribution of masses of gas constituents. It is also proposed how to use the rotation-dependent heat capacity for improving the thermodynamic efficiency of internal combustion engines. To that end, two possible engine embodiments are proposed and explored in detail. In addition, a transient piezothermal effect is discovered numerically and is given a theoretical explanation. The effect consists of the formation of a radial temperature gradient driven by gas heating or compression along the rotation axis. By elaborating on this idea, a theoretical explanation is proposed also for the operation of so-called vortex tubes, which so far have been lacking rigorous theory. Finally, adiabatic compression of spinning plasmas and ionized gases are considered, and the effect of the electrostatic interactionsmore » on the compressibility and heat capacity is predicted.« less

Authors:
 [1]
  1. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
OSTI Identifier:
1364444
DOE Contract Number:  
AC02-09CH11466
Resource Type:
Thesis/Dissertation
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; compression; gas; plasma; rotation; thermodynamics

Citation Formats

Geyko, Vasily I. Physics of spinning gases and plasmas. United States: N. p., 2017. Web.
Geyko, Vasily I. Physics of spinning gases and plasmas. United States.
Geyko, Vasily I. Sat . "Physics of spinning gases and plasmas". United States.
@article{osti_1364444,
title = {Physics of spinning gases and plasmas},
author = {Geyko, Vasily I.},
abstractNote = {Initially motivated by the problem of compression of spinning plasma in Z-pinch devices and related applications, the thesis explores a number of interesting smaller-scale problems related to physics of gas and plasma rotation. In particular, thermodynamics of ideal spinning gas is studied. It is found that rotation modifies the heat capacity of the gas and reduces the gas compressibility. It is also proposed that, by performing a series of measurement of external parameters of a spinning gas, one can infer the distribution of masses of gas constituents. It is also proposed how to use the rotation-dependent heat capacity for improving the thermodynamic efficiency of internal combustion engines. To that end, two possible engine embodiments are proposed and explored in detail. In addition, a transient piezothermal effect is discovered numerically and is given a theoretical explanation. The effect consists of the formation of a radial temperature gradient driven by gas heating or compression along the rotation axis. By elaborating on this idea, a theoretical explanation is proposed also for the operation of so-called vortex tubes, which so far have been lacking rigorous theory. Finally, adiabatic compression of spinning plasmas and ionized gases are considered, and the effect of the electrostatic interactions on the compressibility and heat capacity is predicted.},
doi = {},
url = {https://www.osti.gov/biblio/1364444}, journal = {},
number = ,
volume = ,
place = {United States},
year = {2017},
month = {4}
}

Thesis/Dissertation:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this thesis or dissertation.

Save / Share: