skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: USE OF SMALL SPECIMENS FOR FRACTURE TOUGHNESS EVALUATION OF RPV STEELS

Conference ·
OSTI ID:1364283

Small specimens are playing the key role in evaluating properties of irradiated materials. The use of small specimens provides several advantages. Typically, only a small volume of material can be irradiated in a reactor at desirable conditions in terms of temperature, neutron flux, and neutron dose. A small volume of irradiated material may also allow for easier handling of specimens. Smaller specimens reduce the amount of radioactive material, minimizing personnel exposures and waste disposal. However, use of small specimens imposes a variety of challenges as well. These challenges are associated with proper accounting for size effects and transferability of small specimen data to the real structures of interest. Any fracture toughness specimen that can be made out of standard Charpy specimen or its broken half may have exceptional utility for evaluation of reactor pressure vessels (RPVs) since it would allow one to determine and monitor directly actual fracture toughness instead of requiring indirect predictions using correlations established with impact data. The Charpy V-notch specimen is the most commonly used specimen geometry in surveillance programs and most likely to be used in advanced reactors as per ASME code.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-00OR22725
OSTI ID:
1364283
Resource Relation:
Conference: The International Congress on Advances in Nuclear Power Plants (ICAPP), San Francisco, CA, USA, 20160417, 20160420
Country of Publication:
United States
Language:
English