skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Understanding trends in electrochemical carbon dioxide reduction rates

Authors:
; ; ; ; ORCiD logo;
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); JCAP
OSTI Identifier:
1364102
Report Number(s):
SLAC-PUB-16943
Journal ID: ISSN 2041-1723
DOE Contract Number:  
AC02-76SF00515
Resource Type:
Journal Article
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
CHEM

Citation Formats

Liu, Xinyan, Xiao, Jianping, Peng, Hongjie, Hong, Xin, Chan, Karen, and Nørskov, Jens K. Understanding trends in electrochemical carbon dioxide reduction rates. United States: N. p., 2017. Web. doi:10.1038/ncomms15438.
Liu, Xinyan, Xiao, Jianping, Peng, Hongjie, Hong, Xin, Chan, Karen, & Nørskov, Jens K. Understanding trends in electrochemical carbon dioxide reduction rates. United States. doi:10.1038/ncomms15438.
Liu, Xinyan, Xiao, Jianping, Peng, Hongjie, Hong, Xin, Chan, Karen, and Nørskov, Jens K. Mon . "Understanding trends in electrochemical carbon dioxide reduction rates". United States. doi:10.1038/ncomms15438. https://www.osti.gov/servlets/purl/1364102.
@article{osti_1364102,
title = {Understanding trends in electrochemical carbon dioxide reduction rates},
author = {Liu, Xinyan and Xiao, Jianping and Peng, Hongjie and Hong, Xin and Chan, Karen and Nørskov, Jens K.},
abstractNote = {},
doi = {10.1038/ncomms15438},
journal = {Nature Communications},
issn = {2041-1723},
number = ,
volume = 8,
place = {United States},
year = {2017},
month = {5}
}

Works referenced in this record:

The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction
journal, January 2012

  • Tang, Wei; Peterson, Andrew A.; Varela, Ana Sofia
  • Phys. Chem. Chem. Phys., Vol. 14, Issue 1
  • DOI: 10.1039/C1CP22700A

Mesostructure-Induced Selectivity in CO 2 Reduction Catalysis
journal, November 2015

  • Hall, Anthony Shoji; Yoon, Youngmin; Wuttig, Anna
  • Journal of the American Chemical Society, Vol. 137, Issue 47
  • DOI: 10.1021/jacs.5b08259

A Highly Selective Copper-Indium Bimetallic Electrocatalyst for the Electrochemical Reduction of Aqueous CO 2 to CO
journal, December 2014

  • Rasul, Shahid; Anjum, Dalaver H.; Jedidi, Abdesslem
  • Angewandte Chemie International Edition, Vol. 54, Issue 7
  • DOI: 10.1002/anie.201410233

Nanostructured transition metal dichalcogenide electrocatalysts for CO 2 reduction in ionic liquid
journal, July 2016


Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media
journal, August 1994

  • Hori, Yoshio; Wakebe, Hidetoshi; Tsukamoto, Toshio
  • Electrochimica Acta, Vol. 39, Issue 11-12, p. 1833-1839
  • DOI: 10.1016/0013-4686(94)85172-7

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol
journal, March 2014

  • Studt, Felix; Sharafutdinov, Irek; Abild-Pedersen, Frank
  • Nature Chemistry, Vol. 6, Issue 4
  • DOI: 10.1038/nchem.1873

Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces
journal, August 2014

  • Kuhl, Kendra P.; Hatsukade, Toru; Cave, Etosha R.
  • Journal of the American Chemical Society, Vol. 136, Issue 40
  • DOI: 10.1021/ja505791r

The Structure of the Hydrogen Ion (H aq + ) in Water
journal, February 2010

  • Stoyanov, Evgenii S.; Stoyanova, Irina V.; Reed, Christopher A.
  • Journal of the American Chemical Society, Vol. 132, Issue 5
  • DOI: 10.1021/ja9101826

Operational constraints and strategies for systems to effect the sustainable, solar-driven reduction of atmospheric CO 2
journal, January 2015

  • Chen, Yikai; Lewis, Nathan S.; Xiang, Chengxiang
  • Energy & Environmental Science, Vol. 8, Issue 12
  • DOI: 10.1039/C5EE02908B

Particle Size Effects in the Catalytic Electroreduction of CO 2 on Cu Nanoparticles
journal, May 2014

  • Reske, Rulle; Mistry, Hemma; Behafarid, Farzad
  • Journal of the American Chemical Society, Vol. 136, Issue 19
  • DOI: 10.1021/ja500328k

Modeling the electrified solid–liquid interface
journal, November 2008


Modeling and Experimental Validation of Electrochemical Reduction of CO 2 to CO in a Microfluidic Cell
journal, November 2014

  • Wu, Kunna; Birgersson, Erik; Kim, Byoungsu
  • Journal of The Electrochemical Society, Vol. 162, Issue 1
  • DOI: 10.1149/2.1021414jes

Electrochemical reduction of bicarbonate ions at a bright palladium cathode
journal, January 1985

  • Spichiger-Ulmann, Martine; Augustynski, Jan
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 81, Issue 3
  • DOI: 10.1039/f19858100713

Electrochemical reduction of carbon dioxide at a series of platinum single crystal electrodes
journal, August 2000


Pd catalysts supported onto nanostructured carbon materials for CO2 valorization by electrochemical reduction
journal, February 2015


On the effect of coverage-dependent adsorbate–adsorbate interactions for CO methanation on transition metal surfaces
journal, November 2013


Active and Selective Conversion of CO 2 to CO on Ultrathin Au Nanowires
journal, November 2014

  • Zhu, Wenlei; Zhang, Yin-Jia; Zhang, Hongyi
  • Journal of the American Chemical Society, Vol. 136, Issue 46
  • DOI: 10.1021/ja5095099

How Doped MoS 2 Breaks Transition-Metal Scaling Relations for CO 2 Electrochemical Reduction
journal, June 2016


A Gross-Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO 2
journal, June 2016

  • Verma, Sumit; Kim, Byoungsu; Jhong, Huei-Ru “Molly”
  • ChemSusChem, Vol. 9, Issue 15
  • DOI: 10.1002/cssc.201600394

Nickel–Gallium-Catalyzed Electrochemical Reduction of CO 2 to Highly Reduced Products at Low Overpotentials
journal, February 2016

  • Torelli, Daniel A.; Francis, Sonja A.; Crompton, J. Chance
  • ACS Catalysis, Vol. 6, Issue 3
  • DOI: 10.1021/acscatal.5b02888

Electrochemical Reduction of CO 2 at Copper Nanofoams
journal, August 2014

  • Sen, Sujat; Liu, Dan; Palmore, G. Tayhas R.
  • ACS Catalysis, Vol. 4, Issue 9
  • DOI: 10.1021/cs500522g

Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO 2 reduction
journal, January 2015

  • Hahn, Christopher; Abram, David N.; Hansen, Heine A.
  • Journal of Materials Chemistry A, Vol. 3, Issue 40
  • DOI: 10.1039/C5TA04863J

Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces
journal, January 2014

  • Shi, Chuan; Hansen, Heine A.; Lausche, Adam C.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 10
  • DOI: 10.1039/c3cp54822h

Structural effect on the rate of CO2 reduction on single crystal electrodes of palladium
journal, January 1997

  • Hoshi, Nagahiro; Noma, Makiko; Suzuki, Toshitake
  • Journal of Electroanalytical Chemistry, Vol. 421, Issue 1-2
  • DOI: 10.1016/S0022-0728(96)01023-6

Assessing the reliability of calculated catalytic ammonia synthesis rates
journal, July 2014


Selective electrochemical reduction of CO 2 to different alcohol products by an organically doped alloy catalyst
journal, January 2016

  • Yang, Heng-Pan; Yue, Ying-Na; Qin, Sen
  • Green Chemistry, Vol. 18, Issue 11
  • DOI: 10.1039/C6GC00091F

Electrochemical reduction of CO 2 to ethylene glycol on imidazolium ion-terminated self-assembly monolayer-modified Au electrodes in an aqueous solution
journal, January 2015

  • Tamura, Jun; Ono, Akihiko; Sugano, Yoshitsune
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 39
  • DOI: 10.1039/C5CP03028E

Theoretical Insights into a CO Dimerization Mechanism in CO 2 Electroreduction
journal, May 2015

  • Montoya, Joseph H.; Shi, Chuan; Chan, Karen
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 11
  • DOI: 10.1021/acs.jpclett.5b00722

Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions
journal, July 1997

  • Marković, N. M.; Grgur, B. N.; Ross, P. N.
  • The Journal of Physical Chemistry B, Vol. 101, Issue 27
  • DOI: 10.1021/jp970930d

Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts
journal, July 2015

  • Verdaguer-Casadevall, Arnau; Li, Christina W.; Johansson, Tobias P.
  • Journal of the American Chemical Society, Vol. 137, Issue 31
  • DOI: 10.1021/jacs.5b06227

Identification of Possible Pathways for C–C Bond Formation during Electrochemical Reduction of CO 2 : New Theoretical Insights from an Improved Electrochemical Model
journal, April 2016

  • Goodpaster, Jason D.; Bell, Alexis T.; Head-Gordon, Martin
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 8
  • DOI: 10.1021/acs.jpclett.6b00358

Molybdenum Sulfides and Selenides as Possible Electrocatalysts for CO 2 Reduction
journal, July 2014


Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer
journal, June 2015


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Ionic Liquid-Mediated Selective Conversion of CO2 to CO at Low Overpotentials
journal, September 2011

  • Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.
  • Science, Vol. 334, Issue 6056, p. 643-644
  • DOI: 10.1126/science.1209786

Inhibited proton transfer enhances Au-catalyzed CO 2 -to-fuels selectivity
journal, July 2016

  • Wuttig, Anna; Yaguchi, Momo; Motobayashi, Kenta
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 32
  • DOI: 10.1073/pnas.1602984113

Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+-Ni(OH)2-Pt Interfaces
journal, December 2011


Global warming footprint of the electrochemical reduction of carbon dioxide to formate
journal, October 2015


Insights into the electrocatalytic reduction of CO 2 on metallic silver surfaces
journal, January 2014

  • Hatsukade, Toru; Kuhl, Kendra P.; Cave, Etosha R.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 27
  • DOI: 10.1039/C4CP00692E

Electrochemical reduction of CO2 on single crystal electrodes of silver Ag(111), Ag(100) and Ag(110)
journal, December 1997

  • Hoshi, Nagahiro; Kato, Makiko; Hori, Yoshio
  • Journal of Electroanalytical Chemistry, Vol. 440, Issue 1-2, p. 283-286
  • DOI: 10.1016/S0022-0728(97)00447-6

Electrochemical Reduction of Carbon Dioxide on an Indium Wire in a KOH/Methanol-Based Electrolyte at Ambient Temperature and Pressure
journal, March 1999

  • Kaneco, Satoshi; Iwao, Ryosuke; Iiba, Kenji
  • Environmental Engineering Science, Vol. 16, Issue 2
  • DOI: 10.1089/ees.1999.16.131

Robust carbon dioxide reduction on molybdenum disulphide edges
journal, July 2014

  • Asadi, Mohammad; Kumar, Bijandra; Behranginia, Amirhossein
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5470

Scaling Properties of Adsorption Energies for Hydrogen-Containing Molecules on Transition-Metal Surfaces
journal, July 2007


Electrochemical reduction of carbon dioxide atTi and hydrogen-storing Ti electrodes inKOH–methanol
journal, January 1998


Universal transition state scaling relations for (de)hydrogenation over transition metals
journal, January 2011

  • Wang, S.; Petzold, V.; Tripkovic, V.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 46
  • DOI: 10.1039/c1cp20547a

BEP relations for N2 dissociation over stepped transition metal and alloy surfaces
journal, January 2008

  • Munter, Ture R.; Bligaard, Thomas; Christensen, Claus H.
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 34
  • DOI: 10.1039/b720021h

Sustainable production of formic acid by electrolytic reduction of gaseous carbon dioxide
journal, January 2015

  • Lee, Seunghwa; Ju, HyungKuk; Machunda, Revocatus
  • Journal of Materials Chemistry A, Vol. 3, Issue 6
  • DOI: 10.1039/C4TA03893B

Controlling Catalytic Selectivities during CO 2 Electroreduction on Thin Cu Metal Overlayers
journal, July 2013

  • Reske, Rulle; Duca, Matteo; Oezaslan, Mehtap
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 15
  • DOI: 10.1021/jz401087q

Activity Descriptors for CO 2 Electroreduction to Methane on Transition-Metal Catalysts
journal, January 2012

  • Peterson, Andrew A.; Nørskov, Jens K.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 2
  • DOI: 10.1021/jz201461p

CO 2 Reduction on Cu at Low Overpotentials with Surface-Enhanced in Situ Spectroscopy
journal, July 2016

  • Heyes, Jeffrey; Dunwell, Marco; Xu, Bingjun
  • The Journal of Physical Chemistry C, Vol. 120, Issue 31
  • DOI: 10.1021/acs.jpcc.6b03065

Regulating the Product Distribution of CO Reduction by the Atomic-Level Structural Modification of the Cu Electrode Surface
journal, June 2016


Electrocatalytic Carbon Dioxide Activation: The Rate-Determining Step of Pyridinium-Catalyzed CO2 Reduction
journal, February 2011

  • Morris, Amanda J.; McGibbon, Robert T.; Bocarsly, Andrew B.
  • ChemSusChem, Vol. 4, Issue 2, p. 191-196
  • DOI: 10.1002/cssc.201000379

Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111)
journal, January 2016

  • Xiao, Hai; Cheng, Tao; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 138, Issue 2
  • DOI: 10.1021/jacs.5b11390

Barriers of Electrochemical CO 2 Reduction on Transition Metals
journal, July 2016

  • Shi, Chuan; Chan, Karen; Yoo, Jong Suk
  • Organic Process Research & Development, Vol. 20, Issue 8
  • DOI: 10.1021/acs.oprd.6b00103

Towards the computational design of solid catalysts
journal, April 2009

  • Nørskov, J.; Bligaard, T.; Rossmeisl, J.
  • Nature Chemistry, Vol. 1, Issue 1, p. 37-46
  • DOI: 10.1038/nchem.121

Reconstruction of Cu(100) Electrode Surfaces during Hydrogen Evolution
journal, August 2009

  • Matsushima, Hisayoshi; Taranovskyy, Andriy; Haak, Christian
  • Journal of the American Chemical Society, Vol. 131, Issue 30
  • DOI: 10.1021/ja904033t

Electroreduction of Carbon Monoxide Over a Copper Nanocube Catalyst: Surface Structure and pH Dependence on Selectivity
journal, February 2016

  • Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders
  • ChemCatChem, Vol. 8, Issue 6
  • DOI: 10.1002/cctc.201501189

Intrinsic Selectivity and Structure Sensitivity of Rhodium Catalysts for C 2+ Oxygenate Production
journal, March 2016

  • Yang, Nuoya; Medford, Andrew J.; Liu, Xinyan
  • Journal of the American Chemical Society, Vol. 138, Issue 11
  • DOI: 10.1021/jacs.5b12087

Role of Steps in N 2 Activation on Ru(0001)
journal, August 1999


Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO 2 Fixation
journal, June 2013

  • Appel, Aaron M.; Bercaw, John E.; Bocarsly, Andrew B.
  • Chemical Reviews, Vol. 113, Issue 8
  • DOI: 10.1021/cr300463y

Electrochemical behavior of Pd–Rh alloys
journal, March 2006


    Works referencing / citing this record:

    Structure‐Sensitivity and Electrolyte Effects in CO 2 Electroreduction: From Model Studies to Applications
    journal, June 2019

    • Sebastián‐Pascual, Paula; Mezzavilla, Stefano; Stephens, Ifan E. L.
    • ChemCatChem, Vol. 11, Issue 16
    • DOI: 10.1002/cctc.201900552

    Designing materials for electrochemical carbon dioxide recycling
    journal, July 2019