skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Surface Immobilization of Molecular Electrocatalysts for Energy Conversion

Abstract

Electrocatalysts are critically important for a secure energy future, as they facilitate the conversion between electrical energy and chemical energy. Molecular catalysts offer precise control of their structure, and the ability to modify the substituents to understand structure-reactivity relationships that are more difficult to achieve with heterogeneous catalysts. Molecular electrocatalysts can be immobilized on surfaces by covalent bonds or through non-covalent interactions. Advantages of surface immobilization include the need for less catalyst, avoidance of bimolecular decomposition pathways, and easier determination of catalyst lifetime. Copper-catalyzed click reactions are often used to form covalent bonds to surfaces, and pi-pi stacking of pyrene substituents appended to the ligand of a molecular complex is a frequently used method to achieve non-covalent surface immobilization. This mini-review highlights surface confinement of molecular electrocatalysts for reduction of O2, oxidation of H2O, production of H2, and reduction of CO2.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, Richland WA 99352 USA
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1363987
Report Number(s):
PNNL-SA-121541
Journal ID: ISSN 0947-6539; KC0307010
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Chemistry - A European Journal
Additional Journal Information:
Journal Volume: 23; Journal Issue: 32; Journal ID: ISSN 0947-6539
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Bullock, R. Morris, Das, Atanu K., and Appel, Aaron M. Surface Immobilization of Molecular Electrocatalysts for Energy Conversion. United States: N. p., 2017. Web. doi:10.1002/chem.201605066.
Bullock, R. Morris, Das, Atanu K., & Appel, Aaron M. Surface Immobilization of Molecular Electrocatalysts for Energy Conversion. United States. doi:10.1002/chem.201605066.
Bullock, R. Morris, Das, Atanu K., and Appel, Aaron M. Wed . "Surface Immobilization of Molecular Electrocatalysts for Energy Conversion". United States. doi:10.1002/chem.201605066.
@article{osti_1363987,
title = {Surface Immobilization of Molecular Electrocatalysts for Energy Conversion},
author = {Bullock, R. Morris and Das, Atanu K. and Appel, Aaron M.},
abstractNote = {Electrocatalysts are critically important for a secure energy future, as they facilitate the conversion between electrical energy and chemical energy. Molecular catalysts offer precise control of their structure, and the ability to modify the substituents to understand structure-reactivity relationships that are more difficult to achieve with heterogeneous catalysts. Molecular electrocatalysts can be immobilized on surfaces by covalent bonds or through non-covalent interactions. Advantages of surface immobilization include the need for less catalyst, avoidance of bimolecular decomposition pathways, and easier determination of catalyst lifetime. Copper-catalyzed click reactions are often used to form covalent bonds to surfaces, and pi-pi stacking of pyrene substituents appended to the ligand of a molecular complex is a frequently used method to achieve non-covalent surface immobilization. This mini-review highlights surface confinement of molecular electrocatalysts for reduction of O2, oxidation of H2O, production of H2, and reduction of CO2.},
doi = {10.1002/chem.201605066},
journal = {Chemistry - A European Journal},
issn = {0947-6539},
number = 32,
volume = 23,
place = {United States},
year = {2017},
month = {3}
}

Works referenced in this record:

Benchmarking of Homogeneous Electrocatalysts: Overpotential, Turnover Frequency, Limiting Turnover Number
journal, April 2015

  • Costentin, Cyrille; Passard, Guillaume; Savéant, Jean-Michel
  • Journal of the American Chemical Society, Vol. 137, Issue 16
  • DOI: 10.1021/jacs.5b00914

Toward the rational benchmarking of homogeneous H 2 -evolving catalysts
journal, January 2014

  • Artero, Vincent; Saveant, Jean-Michel
  • Energy Environ. Sci., Vol. 7, Issue 11
  • DOI: 10.1039/C4EE01709A

Advanced Carbon Electrode Materials for Molecular Electrochemistry
journal, July 2008

  • McCreery, Richard L.
  • Chemical Reviews, Vol. 108, Issue 7, p. 2646-2687
  • DOI: 10.1021/cr068076m

Chemical modification of gold electrodes via non-covalent interactions
journal, January 2016

  • Lydon, Brian R.; Germann, Alex; Yang, Jenny Y.
  • Inorganic Chemistry Frontiers, Vol. 3, Issue 6
  • DOI: 10.1039/C6QI00010J

Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides
journal, January 2010

  • Hein, Jason E.; Fokin, Valery V.
  • Chemical Society Reviews, Vol. 39, Issue 4
  • DOI: 10.1039/b904091a

Cu-Catalyzed Azide−Alkyne Cycloaddition
journal, August 2008

  • Meldal, Morten; Tornøe, Christian Wenzel
  • Chemical Reviews, Vol. 108, Issue 8
  • DOI: 10.1021/cr0783479

Azide-Modified Graphitic Surfaces for Covalent Attachment of Alkyne-Terminated Molecules by “Click” Chemistry
journal, May 2007

  • Devadoss, Anando; Chidsey, Christopher E. D.
  • Journal of the American Chemical Society, Vol. 129, Issue 17
  • DOI: 10.1021/ja071291f

Squish and CuAAC: Additive-Free Covalent Monolayers of Discrete Molecules in Seconds
journal, April 2013

  • Pellow, Matthew A.; Stack, T. Daniel P.; Chidsey, Christopher E. D.
  • Langmuir, Vol. 29, Issue 18
  • DOI: 10.1021/la400172w

Gas-Phase Azide Functionalization of Carbon
journal, January 2013

  • Stenehjem, Eric D.; Ziatdinov, Vadim R.; Stack, T. Daniel P.
  • Journal of the American Chemical Society, Vol. 135, Issue 3
  • DOI: 10.1021/ja310410d

Modular “Click” Chemistry for Electrochemically and Photoelectrochemically Active Molecular Interfaces to Tin Oxide Surfaces
journal, June 2011

  • Benson, Michelle C.; Ruther, Rose E.; Gerken, James B.
  • ACS Applied Materials & Interfaces, Vol. 3, Issue 8
  • DOI: 10.1021/am200615r

Covalent attachment of diphosphine ligands to glassy carbon electrodes via Cu-catalyzed alkyne-azide cycloaddition. Metallation with Ni( ii )
journal, January 2015

  • Das, Atanu K.; Engelhard, Mark H.; Lense, Sheri
  • Dalton Transactions, Vol. 44, Issue 27
  • DOI: 10.1039/C5DT00162E

Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts
journal, January 1997

  • Allongue, Philippe; Delamar, Michel; Desbat, Bernard
  • Journal of the American Chemical Society, Vol. 119, Issue 1
  • DOI: 10.1021/ja963354s

Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts
journal, July 1992

  • Delamar, Michel; Hitmi, Rachid; Pinson, Jean
  • Journal of the American Chemical Society, Vol. 114, Issue 14, p. 5883-5884
  • DOI: 10.1021/ja00040a074

Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts
journal, January 2005

  • Pinson, Jean; Podvorica, Fetah
  • Chemical Society Reviews, Vol. 34, Issue 5
  • DOI: 10.1039/b406228k

An Anodic Method for Covalent Attachment of Molecules to Electrodes through an Ethynyl Linkage
journal, February 2013

  • Sheridan, Matthew V.; Lam, Kevin; Geiger, William E.
  • Journal of the American Chemical Society, Vol. 135, Issue 8
  • DOI: 10.1021/ja312405h

Novel Method for Grafting Alkyl Chains onto Glassy Carbon. Application to the Easy Immobilization of Ferrocene Used as Redox Probe
journal, November 2011

  • Jouikov, Viatcheslav; Simonet, Jacques
  • Langmuir, Vol. 28, Issue 1
  • DOI: 10.1021/la204028u

Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells
journal, September 2016

  • Brennaman, M. Kyle; Dillon, Robert J.; Alibabaei, Leila
  • Journal of the American Chemical Society, Vol. 138, Issue 40
  • DOI: 10.1021/jacs.6b06466

Electrochemical Instability of Phosphonate-Derivatized, Ruthenium(III) Polypyridyl Complexes on Metal Oxide Surfaces
journal, May 2015

  • Hyde, Jacob T.; Hanson, Kenneth; Vannucci, Aaron K.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 18
  • DOI: 10.1021/acsami.5b01000

Surface Modification Using Phosphonic Acids and Esters
journal, April 2012

  • Queffélec, Clémence; Petit, Marc; Janvier, Pascal
  • Chemical Reviews, Vol. 112, Issue 7
  • DOI: 10.1021/cr2004212

Catalytic water oxidation on derivatized nanoITO
journal, January 2010

  • Chen, Zuofeng; Concepcion, Javier J.; Hull, Jonathan F.
  • Dalton Transactions, Vol. 39, Issue 30
  • DOI: 10.1039/c0dt00362j

Surface Catalysis of Water Oxidation by the Blue Ruthenium Dimer
journal, May 2010

  • Jurss, Jonah W.; Concepcion, Javier C.; Norris, Michael R.
  • Inorganic Chemistry, Vol. 49, Issue 9
  • DOI: 10.1021/ic100469x

Controlled Electropolymerization of Ruthenium(II) Vinylbipyridyl Complexes in Mesoporous Nanoparticle Films of TiO 2
journal, March 2014

  • Fang, Zhen; Keinan, Shahar; Alibabaei, Leila
  • Angewandte Chemie International Edition, Vol. 53, Issue 19
  • DOI: 10.1002/anie.201402309

Controlled Electropolymerization of Ruthenium(II) Vinylbipyridyl Complexes in Mesoporous Nanoparticle Films of TiO 2
journal, March 2014

  • Fang, Zhen; Keinan, Shahar; Alibabaei, Leila
  • Angewandte Chemie, Vol. 126, Issue 19
  • DOI: 10.1002/ange.201402309

Improving the Photocatalytic Reduction of CO 2 to CO through Immobilisation of a Molecular Re Catalyst on TiO 2
journal, January 2015

  • Windle, Christopher D.; Pastor, Ernest; Reynal, Anna
  • Chemistry - A European Journal, Vol. 21, Issue 9
  • DOI: 10.1002/chem.201405041

Electrocatalytic and Solar-Driven CO 2 Reduction to CO with a Molecular Manganese Catalyst Immobilized on Mesoporous TiO 2
journal, April 2016

  • Rosser, Timothy E.; Windle, Christopher D.; Reisner, Erwin
  • Angewandte Chemie International Edition, Vol. 55, Issue 26
  • DOI: 10.1002/anie.201601038

Electrocatalytic and Solar-Driven CO 2 Reduction to CO with a Molecular Manganese Catalyst Immobilized on Mesoporous TiO 2
journal, April 2016

  • Rosser, Timothy E.; Windle, Christopher D.; Reisner, Erwin
  • Angewandte Chemie, Vol. 128, Issue 26
  • DOI: 10.1002/ange.201601038

Covalent Attachment of a Rhenium Bipyridyl CO 2 Reduction Catalyst to Rutile TiO 2
journal, May 2011

  • Anfuso, Chantelle L.; Snoeberger, Robert C.; Ricks, Allen M.
  • Journal of the American Chemical Society, Vol. 133, Issue 18
  • DOI: 10.1021/ja2013664

Effect of the Anchoring Group in Ru−Bipyridyl Sensitizers on the Photoelectrochemical Behavior of Dye-Sensitized TiO 2 Electrodes:  Carboxylate versus Phosphonate Linkages
journal, May 2006

  • Park, Hyunwoong; Bae, Eunyoung; Lee, Jae-Joon
  • The Journal of Physical Chemistry B, Vol. 110, Issue 17
  • DOI: 10.1021/jp060397e

Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges
journal, April 2010

  • Gewirth, Andrew A.; Thorum, Matthew S.
  • Inorganic Chemistry, Vol. 49, Issue 8
  • DOI: 10.1021/ic9022486

Potent catalysis of the electroreduction of oxygen to water by dicobalt porphyrin dimers adsorbed on graphite electrodes
journal, July 1979

  • Collman, James P.; Marrocco, Matt; Denisevich, Peter
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 101, Issue 1
  • DOI: 10.1016/S0022-0728(79)80085-6

Mixed-metal face-to-face porphyrin dimers
journal, May 1983

  • Collman, James P.; Bencosme, C. Susana; Durand, Richard R.
  • Journal of the American Chemical Society, Vol. 105, Issue 9
  • DOI: 10.1021/ja00347a030

Mechanistic aspects of the catalytic reduction of dioxygen by cofacial metalloporphyrins
journal, May 1983

  • Durand, Richard R.; Bencosme, C. Susana; Collman, James P.
  • Journal of the American Chemical Society, Vol. 105, Issue 9
  • DOI: 10.1021/ja00347a032

Cu complexes that catalyze the oxygen reduction reaction
journal, January 2013

  • Thorseth, Matthew A.; Tornow, Claire E.; Tse, Edmund C. M.
  • Coordination Chemistry Reviews, Vol. 257, Issue 1
  • DOI: 10.1016/j.ccr.2012.03.033

Kinetic and Mechanistic Studies of the Electrocatalytic Reduction of O 2 to H 2 O with Mononuclear Cu Complexes of Substituted 1,10-Phenanthrolines
journal, December 2007

  • McCrory, Charles C. L.; Ottenwaelder, Xavier; Stack, T. Daniel P.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 49
  • DOI: 10.1021/jp076106z

Electrocatalytic O 2 Reduction by Covalently Immobilized Mononuclear Copper(I) Complexes: Evidence for a Binuclear Cu 2 O 2 Intermediate
journal, March 2011

  • McCrory, Charles C. L.; Devadoss, Anando; Ottenwaelder, Xavier
  • Journal of the American Chemical Society, Vol. 133, Issue 11
  • DOI: 10.1021/ja106338h

Bio-inspired multinuclear copper complexes covalently immobilized on reduced graphene oxide as efficient electrocatalysts for the oxygen reduction reaction
journal, January 2015

  • Xi, Yue-Ting; Wei, Ping-Jie; Wang, Ru-Chun
  • Chemical Communications, Vol. 51, Issue 35
  • DOI: 10.1039/C5CC00963D

Electrocatalytic O 2 Reduction at a Bio-inspired Mononuclear Copper Phenolato Complex Immobilized on a Carbon Nanotube Electrode
journal, January 2016

  • Gentil, Solène; Serre, Doti; Philouze, Christian
  • Angewandte Chemie International Edition, Vol. 55, Issue 7
  • DOI: 10.1002/anie.201509593

Electrocatalytic O 2 Reduction at a Bio-inspired Mononuclear Copper Phenolato Complex Immobilized on a Carbon Nanotube Electrode
journal, January 2016

  • Gentil, Solène; Serre, Doti; Philouze, Christian
  • Angewandte Chemie, Vol. 128, Issue 7
  • DOI: 10.1002/ange.201509593

A biosynthetic model of cytochrome c oxidase as an electrocatalyst for oxygen reduction
journal, October 2015

  • Mukherjee, Sohini; Mukherjee, Arnab; Bhagi-Damodaran, Ambika
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9467

Highly Efficient Oxidation of Water by a Molecular Catalyst Immobilized on Carbon Nanotubes
journal, October 2011

  • Li, Fei; Zhang, Biaobiao; Li, Xiaona
  • Angewandte Chemie International Edition, Vol. 50, Issue 51
  • DOI: 10.1002/anie.201105044

Highly Efficient Oxidation of Water by a Molecular Catalyst Immobilized on Carbon Nanotubes
journal, October 2011


Behavior of the Ru-bda Water Oxidation Catalyst Covalently Anchored on Glassy Carbon Electrodes
journal, May 2015


Electrochemical driven water oxidation by molecular catalysts in situ polymerized on the surface of graphite carbon electrode
journal, January 2015

  • Wang, Lei; Fan, Ke; Daniel, Quentin
  • Chemical Communications, Vol. 51, Issue 37
  • DOI: 10.1039/C5CC00242G

A Million Turnover Molecular Anode for Catalytic Water Oxidation
journal, November 2016

  • Creus, Jordi; Matheu, Roc; Peñafiel, Itziar
  • Angewandte Chemie, Vol. 128, Issue 49
  • DOI: 10.1002/ange.201609167

Stabilization of a Ruthenium(II) Polypyridyl Dye on Nanocrystalline TiO 2 by an Electropolymerized Overlayer
journal, October 2013

  • Lapides, Alexander M.; Ashford, Dennis L.; Hanson, Kenneth
  • Journal of the American Chemical Society, Vol. 135, Issue 41
  • DOI: 10.1021/ja4055977

Organic Dye-Sensitized Tandem Photoelectrochemical Cell for Light Driven Total Water Splitting
journal, July 2015

  • Li, Fusheng; Fan, Ke; Xu, Bo
  • Journal of the American Chemical Society, Vol. 137, Issue 28
  • DOI: 10.1021/jacs.5b04856

Precursor Transformation during Molecular Oxidation Catalysis with Organometallic Iridium Complexes
journal, July 2013

  • Hintermair, Ulrich; Sheehan, Stafford W.; Parent, Alexander R.
  • Journal of the American Chemical Society, Vol. 135, Issue 29
  • DOI: 10.1021/ja4048762

Electrochemical Activation of Cp* Iridium Complexes for Electrode-Driven Water-Oxidation Catalysis
journal, September 2014

  • Thomsen, Julianne M.; Sheehan, Stafford W.; Hashmi, Sara M.
  • Journal of the American Chemical Society, Vol. 136, Issue 39
  • DOI: 10.1021/ja5068299

A molecular catalyst for water oxidation that binds to metal oxide surfaces
journal, March 2015

  • Sheehan, Stafford W.; Thomsen, Julianne M.; Hintermair, Ulrich
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7469

Development of Molecular Electrocatalysts for Energy Storage
journal, February 2014


Production of hydrogen by electrocatalysis: making the H–H bond by combining protons and hydrides
journal, January 2014

  • Bullock, R. Morris; Appel, Aaron M.; Helm, Monte L.
  • Chem. Commun., Vol. 50, Issue 24
  • DOI: 10.1039/C3CC46135A

Earth-abundant hydrogen evolution electrocatalysts
journal, January 2014

  • McKone, James R.; Marinescu, Smaranda C.; Brunschwig, Bruce S.
  • Chem. Sci., Vol. 5, Issue 3
  • DOI: 10.1039/C3SC51711J

Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions
journal, January 2013

  • Thoi, V. Sara; Sun, Yujie; Long, Jeffrey R.
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35272A

Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges
journal, January 2012

  • Du, Pingwu; Eisenberg, Richard
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee03250c

Hydrogenase-Coated Carbon Nanotubes for Efficient H 2 Oxidation
journal, June 2007

  • Alonso-Lomillo, M. Asunción; Rüdiger, Olaf; Maroto-Valiente, Angel
  • Nano Letters, Vol. 7, Issue 6
  • DOI: 10.1021/nl070519u

From Hydrogenases to Noble Metal-Free Catalytic Nanomaterials for H2 Production and Uptake
journal, December 2009


Bio-inspired noble metal-free nanomaterials approaching platinum performances for H 2 evolution and uptake
journal, January 2016

  • Huan, Tran N.; Jane, Reuben T.; Benayad, Anass
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE02739J

Noncovalent Modification of Carbon Nanotubes with Pyrene-Functionalized Nickel Complexes: Carbon Monoxide Tolerant Catalysts for Hydrogen Evolution and Uptake
journal, January 2011

  • Tran, Phong D.; Le Goff, Alan; Heidkamp, Jonathan
  • Angewandte Chemie International Edition, Vol. 50, Issue 6
  • DOI: 10.1002/anie.201005427

Noncovalent Modification of Carbon Nanotubes with Pyrene-Functionalized Nickel Complexes: Carbon Monoxide Tolerant Catalysts for Hydrogen Evolution and Uptake
journal, January 2011

  • Tran, Phong D.; Le Goff, Alan; Heidkamp, Jonathan
  • Angewandte Chemie, Vol. 123, Issue 6
  • DOI: 10.1002/ange.201005427

Minimal Proton Channel Enables H 2 Oxidation and Production with a Water-Soluble Nickel-Based Catalyst
journal, November 2013

  • Dutta, Arnab; Lense, Sheri; Hou, Jianbo
  • Journal of the American Chemical Society, Vol. 135, Issue 49
  • DOI: 10.1021/ja407826d

Direct Comparison of the Performance of a Bio-inspired Synthetic Nickel Catalyst and a [NiFe]-Hydrogenase, Both Covalently Attached to Electrodes
journal, July 2015

  • Rodriguez-Maciá, Patricia; Dutta, Arnab; Lubitz, Wolfgang
  • Angewandte Chemie International Edition, Vol. 54, Issue 42
  • DOI: 10.1002/anie.201502364

Direkter Leistungsvergleich eines bioinspirierten synthetischen Ni-Katalysators und einer [NiFe]-Hydrogenase, beide kovalent an eine Elektrode gebunden
journal, July 2015

  • Rodriguez-Maciá, Patricia; Dutta, Arnab; Lubitz, Wolfgang
  • Angewandte Chemie, Vol. 127, Issue 42
  • DOI: 10.1002/ange.201502364

Electrocatalytic Hydrogen Evolution at Low Overpotentials by Cobalt Macrocyclic Glyoxime and Tetraimine Complexes
journal, July 2007

  • Hu, Xile; Brunschwig, Bruce S.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 129, Issue 29
  • DOI: 10.1021/ja067876b

Hydrogen evolution by cobalt tetraiminecatalysts adsorbed on electrode surfaces
journal, January 2010

  • Berben, Louise A.; Peters, Jonas C.
  • Chem. Commun., Vol. 46, Issue 3
  • DOI: 10.1039/B921559J

Photoelectrochemical operation of a surface-bound, nickel-phosphine H 2 evolution catalyst on p-Si(111): a molecular semiconductor|catalyst construct
journal, January 2015

  • Seo, Junhyeok; Pekarek, Ryan T.; Rose, Michael J.
  • Chemical Communications, Vol. 51, Issue 68
  • DOI: 10.1039/C5CC02802G

H 2 Photogeneration Using a Phosphonate-Anchored Ni-PNP Catalyst on a Band-Edge-Modified p -Si(111)|AZO Construct
journal, January 2016

  • Kim, Hark Jin; Seo, Junhyeok; Rose, Michael J.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 2
  • DOI: 10.1021/acsami.5b09902

Versatile Photocatalytic Systems for H 2 Generation in Water Based on an Efficient DuBois-Type Nickel Catalyst
journal, December 2013

  • Gross, Manuela A.; Reynal, Anna; Durrant, James R.
  • Journal of the American Chemical Society, Vol. 136, Issue 1
  • DOI: 10.1021/ja410592d

Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions
journal, October 2012

  • Andreiadis, Eugen S.; Jacques, Pierre-André; Tran, Phong D.
  • Nature Chemistry, Vol. 5, Issue 1
  • DOI: 10.1038/nchem.1481

Photogeneration of hydrogen from water by a robust dye-sensitized photocathode
journal, January 2016

  • Shan, B.; Das, A. K.; Marquard, S.
  • Energy & Environmental Science, Vol. 9, Issue 12
  • DOI: 10.1039/C6EE02903E

Enhancing H 2 evolution performance of an immobilised cobalt catalyst by rational ligand design
journal, January 2015

  • Willkomm, Janina; Muresan, Nicoleta M.; Reisner, Erwin
  • Chemical Science, Vol. 6, Issue 5
  • DOI: 10.1039/C4SC03946G

Immobilization of a Molecular Cobaloxime Catalyst for Hydrogen Evolution on a Mesoporous Metal Oxide Electrode
journal, November 2012

  • Muresan, Nicoleta M.; Willkomm, Janina; Mersch, Dirk
  • Angewandte Chemie International Edition, Vol. 51, Issue 51
  • DOI: 10.1002/anie.201207448

Immobilization of a Molecular Cobaloxime Catalyst for Hydrogen Evolution on a Mesoporous Metal Oxide Electrode
journal, November 2012

  • Muresan, Nicoleta M.; Willkomm, Janina; Mersch, Dirk
  • Angewandte Chemie, Vol. 124, Issue 51
  • DOI: 10.1002/ange.201207448

A Poly(cobaloxime)/Carbon Nanotube Electrode: Freestanding Buckypaper with Polymer-Enhanced H 2 -Evolution Performance
journal, February 2016

  • Reuillard, Bertrand; Warnan, Julien; Leung, Jane J.
  • Angewandte Chemie International Edition, Vol. 55, Issue 12
  • DOI: 10.1002/anie.201511378

A Poly(cobaloxime)/Carbon Nanotube Electrode: Freestanding Buckypaper with Polymer-Enhanced H 2 -Evolution Performance
journal, February 2016

  • Reuillard, Bertrand; Warnan, Julien; Leung, Jane J.
  • Angewandte Chemie, Vol. 128, Issue 12
  • DOI: 10.1002/ange.201511378

Covalent Design for Dye-Sensitized H 2 -Evolving Photocathodes Based on a Cobalt Diimine–Dioxime Catalyst
journal, September 2016

  • Kaeffer, Nicolas; Massin, Julien; Lebrun, Colette
  • Journal of the American Chemical Society, Vol. 138, Issue 38
  • DOI: 10.1021/jacs.6b05865

Noncovalent Immobilization of Electrocatalysts on Carbon Electrodes for Fuel Production
journal, November 2013

  • Blakemore, James D.; Gupta, Ayush; Warren, Jeffrey J.
  • Journal of the American Chemical Society, Vol. 135, Issue 49
  • DOI: 10.1021/ja4099609

Two-Dimensional Metal–Organic Surfaces for Efficient Hydrogen Evolution from Water
journal, December 2014

  • Clough, Andrew J.; Yoo, Joseph W.; Mecklenburg, Matthew H.
  • Journal of the American Chemical Society, Vol. 137, Issue 1
  • DOI: 10.1021/ja5116937

Efficient Electrochemical and Photoelectrochemical H 2 Production from Water by a Cobalt Dithiolene One-Dimensional Metal–Organic Surface
journal, October 2015

  • Downes, Courtney A.; Marinescu, Smaranda C.
  • Journal of the American Chemical Society, Vol. 137, Issue 43
  • DOI: 10.1021/jacs.5b07020

A Smorgasbord of Carbon: Electrochemical Analysis of Cobalt–Bis(benzenedithiolate) Complex Adsorption and Electrocatalytic Activity on Diverse Graphitic Supports
journal, August 2016

  • Eady, Shawn C.; MacInnes, Molly M.; Lehnert, Nicolai
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 36
  • DOI: 10.1021/acsami.6b05159

Rapid Selective Electrocatalytic Reduction of Carbon Dioxide to Formate by an Iridium Pincer Catalyst Immobilized on Carbon Nanotube Electrodes
journal, June 2014

  • Kang, Peng; Zhang, Sheng; Meyer, Thomas J.
  • Angewandte Chemie International Edition, Vol. 53, Issue 33
  • DOI: 10.1002/anie.201310722

Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation
journal, October 2007

  • Borup, Rod; Meyers, Jeremy; Pivovar, Bryan
  • Chemical Reviews, Vol. 107, Issue 10
  • DOI: 10.1021/cr050182l

Noncovalent Immobilization of a Molecular Iron-Based Electrocatalyst on Carbon Electrodes for Selective, Efficient CO 2 -to-CO Conversion in Water
journal, February 2016

  • Maurin, Antoine; Robert, Marc
  • Journal of the American Chemical Society, Vol. 138, Issue 8
  • DOI: 10.1021/jacs.5b12652

Kinetic and structural studies, origins of selectivity, and interfacial charge transfer in the artificial photosynthesis of CO
journal, May 2012

  • Smieja, J. M.; Benson, E. E.; Kumar, B.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1119863109

Manganese Electrocatalysts with Bulky Bipyridine Ligands: Utilizing Lewis Acids To Promote Carbon Dioxide Reduction at Low Overpotentials
journal, January 2016

  • Sampson, Matthew D.; Kubiak, Clifford P.
  • Journal of the American Chemical Society, Vol. 138, Issue 4
  • DOI: 10.1021/jacs.5b12215

[Mn(bipyridyl)(CO)3Br]: An Abundant Metal Carbonyl Complex as Efficient Electrocatalyst for CO2 Reduction
journal, September 2011

  • Bourrez, Marc; Molton, Florian; Chardon-Noblat, Sylvie
  • Angewandte Chemie International Edition, Vol. 50, Issue 42
  • DOI: 10.1002/anie.201103616

[Mn(bipyridyl)(CO)3Br]: An Abundant Metal Carbonyl Complex as Efficient Electrocatalyst for CO2 Reduction
journal, September 2011

  • Bourrez, Marc; Molton, Florian; Chardon-Noblat, Sylvie
  • Angewandte Chemie, Vol. 123, Issue 42
  • DOI: 10.1002/ange.201103616

Manganese as a Substitute for Rhenium in CO 2 Reduction Catalysts: The Importance of Acids
journal, February 2013

  • Smieja, Jonathan M.; Sampson, Matthew D.; Grice, Kyle A.
  • Inorganic Chemistry, Vol. 52, Issue 5
  • DOI: 10.1021/ic302391u

Manganese Catalysts with Bulky Bipyridine Ligands for the Electrocatalytic Reduction of Carbon Dioxide: Eliminating Dimerization and Altering Catalysis
journal, February 2014

  • Sampson, Matthew D.; Nguyen, An D.; Grice, Kyle A.
  • Journal of the American Chemical Society, Vol. 136, Issue 14
  • DOI: 10.1021/ja501252f

Covalent Attachment of Catalyst Molecules to Conductive Diamond: CO 2 Reduction Using “Smart” Electrodes
journal, September 2012

  • Yao, Shu A.; Ruther, Rose E.; Zhang, Linghong
  • Journal of the American Chemical Society, Vol. 134, Issue 38
  • DOI: 10.1021/ja304783j

Polymer coordination promotes selective CO 2 reduction by cobalt phthalocyanine
journal, January 2016

  • Kramer, W. W.; McCrory, C. C. L.
  • Chemical Science, Vol. 7, Issue 4
  • DOI: 10.1039/C5SC04015A

    Works referencing / citing this record:

    A Functional Hydrogenase Mimic Chemisorbed onto Fluorine-Doped Tin Oxide Electrodes: A Strategy towards Water Splitting Devices
    journal, December 2017

    • Zaffaroni, Riccardo; Detz, Remko J.; van der Vlugt, Jarl Ivar
    • ChemSusChem, Vol. 11, Issue 1
    • DOI: 10.1002/cssc.201701757

    Vibrational structure analysis of cobalt fluoro-porphyrin surface coatings on gallium phosphide
    journal, June 2018

    • Khusnutdinova, Diana; Beiler, Anna M.; Wadsworth, Brian L.
    • Journal of Porphyrins and Phthalocyanines, Vol. 22, Issue 06
    • DOI: 10.1142/s1088424618500906

    H 2 evolution by a cobalt selenolate electrocatalyst and related mechanistic studies
    journal, January 2017

    • Downes, Courtney A.; Yoo, Joseph W.; Orchanian, Nicholas M.
    • Chemical Communications, Vol. 53, Issue 53
    • DOI: 10.1039/c7cc02473h

    Immobilization of Molecular Catalysts for Enhanced Redox Catalysis
    journal, February 2018