skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Preventing Blackouts by Building a Better Power Grid

Abstract

America’s power grid is undergoing significant change. New mixes of electricity generation, as well as evolving consumer demand, make it even more challenging to manage. Moment-to-moment changes in electricity supply and demand can vary drastically, challenging power grid operators who must maintain a balance—in real time—to avoid disruptions and blackouts. Enter Senior Power Engineer Zhenyu (Henry) Huang. Henry leads PNNL’s initiative to develop technologies that will shape the future of the power grid, and he’s part of a team that is determined to make our nation’s grid more reliable and secure.

Authors:
Publication Date:
Research Org.:
PNNL (Pacific Northwest National Laboratory (PNNL), Richland, WA (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1363942
Resource Type:
Multimedia
Country of Publication:
United States
Language:
English
Subject:
24 POWER TRANSMISSION AND DISTRIBUTION; ELECTRICITY; POWER GRID; POWER GRID RESEARCH

Citation Formats

Huang, Henry. Preventing Blackouts by Building a Better Power Grid. United States: N. p., 2017. Web.
Huang, Henry. Preventing Blackouts by Building a Better Power Grid. United States.
Huang, Henry. Mon . "Preventing Blackouts by Building a Better Power Grid". United States. doi:. https://www.osti.gov/servlets/purl/1363942.
@article{osti_1363942,
title = {Preventing Blackouts by Building a Better Power Grid},
author = {Huang, Henry},
abstractNote = {America’s power grid is undergoing significant change. New mixes of electricity generation, as well as evolving consumer demand, make it even more challenging to manage. Moment-to-moment changes in electricity supply and demand can vary drastically, challenging power grid operators who must maintain a balance—in real time—to avoid disruptions and blackouts. Enter Senior Power Engineer Zhenyu (Henry) Huang. Henry leads PNNL’s initiative to develop technologies that will shape the future of the power grid, and he’s part of a team that is determined to make our nation’s grid more reliable and secure.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2017},
month = {Mon May 01 00:00:00 EDT 2017}
}
  • In collaboration with Siemens and the National Renewable Energy Laboratory (NREL), OMNETRIC Group developed a distributed control hierarchy—based on an open field message bus (OpenFMB) framework—that allows control decisions to be made at the edge of the grid. The technology was validated and demonstrated at NREL’s Energy Systems Integration Facility.
  • Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.
  • At PNNL we’re developing a test bed for control of how buildings interact with the grid—an important step toward helping buildings achieve their potential for reducing energy use and improving the management of the nation’s power systems. The test bed works by allowing researchers to conduct experiments on PNNL’s specially-equipped Systems Engineering Building. This unique resource will help the Department of Energy achieve its mission of reducing buildings energy use by 50 percent by 2030.
  • The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) has been tasked to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supplies. LANL has pioneered the development of coated conductors – high-temperature superconducting (HTS) tapes – which permit dramatically greater current densities than conventional copper cable, and enable new technologies to secure the national electric grid. Sustained world-class research from concept, demonstration, transfer, and ongoing industrial support has moved this idea from the laboratory to the commercial marketplace.
  • The power grid is changing and evolving. One aspect of this change is the growing use of smart meters and other devices, which are producing large volumes of useful data. However, in many cases, the data can’t be translated quickly into actionable guidance to improve grid performance. There's a need for innovative tools. The GridOPTICS(TM) Software System, or GOSS, developed through PNNL's Future Power Grid Initiative, is open source and became publicly available in spring 2014. The value of this middleware is that it easily integrates grid applications with sources of data and facilitates communication between them. Such a capabilitymore » provides a foundation for developing a range of applications to improve grid management.« less