skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Make the World Safer from Nuclear Weapons

Abstract

Senior Nuclear Scientist Ted Bowyer knows firsthand the challenges associated with protecting our nation. Ted and his colleagues help detect the proliferation of nuclear weapons. They developed award-winning technologies that give international treaty verification authorities “eyes and ears” around the globe. The instruments, located in 80 countries, help ensure compliance with the Comprehensive Nuclear Test-Ban Treaty, or CTBT. They are completely automated radionuclide monitoring systems that would detect airborne radioactive particles if a nuclear detonation occurred in the air, underground or at sea. Some samples collected through these technologies are sent to PNNL’s Shallow Underground Laboratory—the only certified U.S. radionuclide laboratory for the CTBT’s International Monitoring System Organization.

Authors:
Publication Date:
Research Org.:
PNNL (Pacific Northwest National Laboratory (PNNL), Richland, WA (United States))
Sponsoring Org.:
USDOE
OSTI Identifier:
1363917
Resource Type:
Multimedia
Country of Publication:
United States
Language:
English
Subject:
98 NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION; CTBT; COMPREHENSIVE NUCLEAR TEST-BAN TREATY; NUCLEAR WEAPONS; UNDERGROUND LABORATORY; NATIONAL SECURITY

Citation Formats

Bowyer, Ted. Make the World Safer from Nuclear Weapons. United States: N. p., 2017. Web.
Bowyer, Ted. Make the World Safer from Nuclear Weapons. United States.
Bowyer, Ted. Mon . "Make the World Safer from Nuclear Weapons". United States. doi:. https://www.osti.gov/servlets/purl/1363917.
@article{osti_1363917,
title = {Make the World Safer from Nuclear Weapons},
author = {Bowyer, Ted},
abstractNote = {Senior Nuclear Scientist Ted Bowyer knows firsthand the challenges associated with protecting our nation. Ted and his colleagues help detect the proliferation of nuclear weapons. They developed award-winning technologies that give international treaty verification authorities “eyes and ears” around the globe. The instruments, located in 80 countries, help ensure compliance with the Comprehensive Nuclear Test-Ban Treaty, or CTBT. They are completely automated radionuclide monitoring systems that would detect airborne radioactive particles if a nuclear detonation occurred in the air, underground or at sea. Some samples collected through these technologies are sent to PNNL’s Shallow Underground Laboratory—the only certified U.S. radionuclide laboratory for the CTBT’s International Monitoring System Organization.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2017},
month = {Mon May 01 00:00:00 EDT 2017}
}
  • Making lithium-ion batteries safer for earthlings and astronauts is something NREL excels at. In this video you’ll meet Matt Keyser, a senior energy storage engineer who is on a mission to improve the thermal performance of batteries for electric vehicles, consumer gadgets, and technology used by NASA in outer space. Matt and his team study battery failure using innovative technologies, such as the award-winning Battery Internal Short Circuit (ISC) Device that can precisely identify weak spots in battery cells. This cutting-edge research helps battery manufacturers develop advanced materials that can deliver superior results. Who benefits from all of this ingenuitymore » rooted in fundamental science? We all do!« less
  • Extended version with narration. This video shows our roles in making the world safer — working to end World War II, providing stable isotopes for research, providing unique precision manufacturing capabilities, and meeting nonproliferation and global security missions.
  • This video shows our roles in making the world safer — working to end World War II, providing stable isotopes for research, providing unique precision manufacturing capabilities, and meeting nonproliferation and global security missions.
  • 'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Officemore » of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.« less
  • A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple,more » Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.« less