skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Isotopic constraints on the origin of the Moon

Authors:
;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1363857
Report Number(s):
LLNL-CONF-731224
DOE Contract Number:
AC52-07NA27344
Resource Type:
Conference
Resource Relation:
Conference: Presented at: Interdisciplinary Workshop: Accretion and Early Differentiation of the Earth and Terrestrial Planets, Nice, France, May 29 - Jun 03, 2017
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 79 ASTRONOMY AND ASTROPHYSICS

Citation Formats

Kruijer, T S, and Kleine, T. Isotopic constraints on the origin of the Moon. United States: N. p., 2017. Web.
Kruijer, T S, & Kleine, T. Isotopic constraints on the origin of the Moon. United States.
Kruijer, T S, and Kleine, T. Wed . "Isotopic constraints on the origin of the Moon". United States. doi:. https://www.osti.gov/servlets/purl/1363857.
@article{osti_1363857,
title = {Isotopic constraints on the origin of the Moon},
author = {Kruijer, T S and Kleine, T},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed May 10 00:00:00 EDT 2017},
month = {Wed May 10 00:00:00 EDT 2017}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The Rustler Fm. overlies the salt beds in Salado Fm. in which the Waste Isolation Pilot Plant is being developed. The water in the Rustler Fm. aquifers have been the subject of various studies, including stable isotopes. Lambert and Harvey note that the Rustler waters all have [delta]D below [minus]43% whereas the other young ground waters in the region have [delta]D's above 41%. They conclude that the water in the Rustler is not from modern recharge but is fossil water from a past climatic regime. Chapman on the other hand concludes that waters on Carlsbad Caverns are isotopically heavier thanmore » the Rustler water due to cave evaporation, and thus the Rustler water could be from modern recharge. The two different interpretations have very different implications for the hydrological characterization of the WIPP site. In order to further study this issue the authors have collected six shallow cores from the unconsolidated sand in the vicinity of WIPP. Water was extracted from each sample by vacuum distillation. For these samples the projected meteoric waters would have [delta]D values in the range of [minus]45 to [minus]55%. This falls well within the range of the [delta]D values for the Rustler Fm. From this the author concludes that the Rustler water could result from modern precipitation, although not from infiltration through a soil where evaporation is active. Soil waters may provide important isotopic constraints on the origins of water in regional aquifer systems.« less
  • The Fra Mauro breccias at Apollo 14 contain distinctive suites of mare basalts and highland crustal rocks that contrast significantly with equivalent rocks from other Apollo sites. These contrasts imply lateral heterogeneity of the lunar crust and mantle on a regional scale. This heterogeneity may date back to the earliest stages of lunar accretion and differentiation. Current theories requiring a Moon-wide crust of Ferroan Anorthosite are based largely on samples from Apollo 16, where all but a few samples represent the FAN suite. However, at the nearside sites, FAN is either scarce (A-15) or virtually absent (A-12, A-14, A-17). Itmore » is suggested that the compositional variations could be accounted for by the acceleration of a large mass of material (e.g., 0.1 to 0.2 moon masses) late in the crystallization history of the magma ocean. Besides adding fresh, primordial material, this would remelt a large pocket of crust and mantle, thereby allowing a second distillation to occur in the resulting magma sea.« less
  • The MAC88104/MAC88105 meteorite is a lunar highlands regolith breccia even more anorthositic than previously available samples of highlands regolith. Clasts studied include two unusual pristine rocks. One, a 2.5-mm, slightly granulitic clast rated as probably pristine, contains extraordinarily Fe-rich (Fo{sub 40}) olivine. The other, a 5-mm clast with clear vestiges of a poikilitic cumulate texture, has silicate compositions that extend the range of the Mg-suite in the direction of the high-mg end of the ferroan-anorthositic suite. The pyroxene of the latter clast is relatively Ca-rich and poorly equilibrated by lunar cumulate standards, suggesting that it may have formed in anmore » uncommonly shallow intrusion. The consistently high-Al{sub 2}O{sub 3} composition indicated for the upper crust supports the magmasphere hypothesis. For the trace-element composition of the crust, the highlands meteorites indicate that the central nearside Apollo and Luna sites are in several respects grossly unrepresentative. Concentrations of siderophile elements are far lower in highlands-meteoritic regolith breccias than in their central nearside counterparts. The high overall siderophile levels and hyperchondritic Ni/Ir and Au/Ir ratios characteristic of highlands materials from Apollo 16 and Apollo 14 are evidently idiosyncracies of the central nearside. Concentrations of incompatible elements, including K, Th, and U, are far lower in the highlands meteorites than in regolith samples from the central nearside. This trend implies that certain lower limits on the bulk-Moon content of U (and associated refractory lithophile elements) should be relaxed. Models of lunar origin implying large enrichments of refractory lithophile elements are not favored by the new constraints from these meteorites.« less
  • The Simondium, Pinnaroo, and Hainholz mesosiderites are interpreted to be clast-laden impact melts that crystallized from immiscible silicate, metallic (Fe-FeS) liquids. The existence of silicate melts is shown by intergranular basaltic textures. Metallic melts are inferred on the basis of smooth boundaries between metal and troilite and the occurrence of troilite as anastomosing areas that radiate outward into the silicate fractions. These relations suggest that troilite crystallized after silicates, concentrating as a late-stage residuum. Evidence for impact melting includes: diversity and abundance of clast types (mineral, metal, lithic) in various stages of recrystallization and assimilation; differences in mineral chemistries betweenmore » clasts and igneous-textured matrix silicates; unusual metal plus silicate bulk composition. Silicate clasts consist primarily of orthopyroxene and minor olivine with a range of Fe/Fe + Mg ratios, anorthitic plagioclase, and rare orthopyroxenite (diogenite) fragments. Substantial amounts of Fe-Ni metal were melted during the impact events and minor amounts were incorporated into the melts as clasts. The clast populations suggest that at least four rock types were melted and mixed: (a) diogenite, (b) a plagioclase-rich source, possibly cumulate eucrite, (c) dunite, and (d) metal. Most orthopyroxene appears to have been derived from fragmentation of diogenites. Orthopyroxene (En/sub 82-61/) and olivine (Fo/sub 86-67/) clasts include much material unsampled as individual meteorites and probably represent a variety of source rocks.« less
  • A few years after the Apollo flights to the Moon, it became clear that all of the existing theories on the origin of the Moon would not satisfy the growing body of constraints which appeared with the data gathered by the Apollo flights. About the same time, researchers began to realize that the inner (terrestrial) planets were not born quietly -- all had evidences of impacts on their surfaces. This fact reinforced the idea that the planets had formed by the accumulation of planetesimals. Since the Earth`s moon is unique among the terrestrial planets, a few researchers realized that perhapsmore » the Moon originated in a singular event; an event that was quite probable, but not so probable that one would expect all the terrestrial planets to have a large moon. And thus was born the idea that a giant impact formed the Moon. Impacts would be common in the early solar system; perhaps a really large impact of two almost fully formed planets of disparate sizes would lead to material orbiting the proto-earth, a proto-moon. This idea remained to be tested. Using a relatively new, but robust, method of doing the hydrodynamics of the collision (Smoothed-Particle Hydrodynamics), the author and his colleagues (W. Benz, Univ. of Arizona, and A.G.W. Cameron, Harvard College Obs.) did a large number of collision simulations on a supercomputer. The author found two major scenarios which would result in the formation of the Moon. The first was direct formation; a moon-sized object is boosted into orbit by gravitational torques. The second is when the orbiting material forms a disk, which, with subsequent evolution can form the Moon. In either case the physical and chemical properties of the newly formed Moon would very neatly satisfy the physical and chemical constraints of the current Moon. Also, in both scenarios the surface of the Earth would be quite hot after the collision. This aspect remains to be explored.« less