skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methods and apparatus for transparent display using scattering nanoparticles

Abstract

Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

Inventors:
; ; ; ;
Publication Date:
Research Org.:
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, Cambridge, MA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1363757
Patent Number(s):
9,677,741
Application Number:
15/090,348
Assignee:
MASSACHUSETTS INSTITUTE OF TECHNOLOGY EFRC
DOE Contract Number:
SC0001299; FG02-09ER46577
Resource Type:
Patent
Resource Relation:
Patent File Date: 2016 Apr 04
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Hsu, Chia Wei, Qiu, Wenjun, Zhen, Bo, Shapira, Ofer, and Soljacic, Marin. Methods and apparatus for transparent display using scattering nanoparticles. United States: N. p., 2017. Web.
Hsu, Chia Wei, Qiu, Wenjun, Zhen, Bo, Shapira, Ofer, & Soljacic, Marin. Methods and apparatus for transparent display using scattering nanoparticles. United States.
Hsu, Chia Wei, Qiu, Wenjun, Zhen, Bo, Shapira, Ofer, and Soljacic, Marin. 2017. "Methods and apparatus for transparent display using scattering nanoparticles". United States. doi:. https://www.osti.gov/servlets/purl/1363757.
@article{osti_1363757,
title = {Methods and apparatus for transparent display using scattering nanoparticles},
author = {Hsu, Chia Wei and Qiu, Wenjun and Zhen, Bo and Shapira, Ofer and Soljacic, Marin},
abstractNote = {Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 6
}

Patent:

Save / Share:
  • Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the imagemore » wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.« less
  • Disclosed herein are transparent color displays with nanoparticles made with nonlinear materials and/or designed to exhibit optical resonances. These nanoparticles are embedded in or hosted on a transparent substrate, such as a flexible piece of clear plastic or acrylic. Illuminating the nanoparticles with invisible light (e.g., infrared or ultraviolet light) causes them to emit visible light. For example, a rare-earth doped nanoparticle may emit visible light when illuminated simultaneoulsy with a first infrared beam at a first wavelength .lamda..sub.1 and a second infrared beam at a second wavelength .lamda..sub.2. And a frequency-doubling nanoparticle may emit visible light when illuminated withmore » a single infrared beam at the nanoparticle's resonant frequency. Selectively addressing these nanoparticles with appropiately selected pump beams yields visible light emitted from the nanoparticles hosted by the transparent substrate in a desired pattern.« less
  • A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.
  • Electrically reconfigurable metamaterial with spatially varied refractive index is proposed for applications such as optical devices and lenses. The apparatus and method comprises a metamaterial in which the refractive indices are modified in space and time by applying one or more electric fields. The metamaterials are electrically controllable and reconfigurable, and consist of metal (gold, silver, etc.) particles of different shapes, such as rods, with dimension much smaller than the wavelength of light, dispersed in a dielectric medium. The metamaterial is controlled by applying a non-uniform electric field that causes two effects: (1) It aligns the metallic anisometric particles withmore » respect to the direction of the applied electric field and (2) It redistributes particles in space, making their local concentration position dependent.« less
  • The disclosed subject matter is directed to a method for producing nanoparticles, as well as the nanoparticles produced by this method. In one embodiment, the nanoparticles produced by the disclosed method have a high defect density.