skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Element-resolved thermodynamics of magnetocaloric LaFe 13 x Si x

Abstract

By combination of two independent approaches, nuclear resonant inelastic x-ray scattering and first-principles calculations in the framework of density functional theory, we demonstrate significant changes in the element-resolved vibrational density of states across the first-order transition from the ferromagnetic low temperature to the paramagnetic high temperature phase of LaFe 13-xSi x. These changes originate from the itinerant electron metamagnetism associated with Fe and lead to a pronounced magneto-elastic softening despite the large volume decrease at the transition. As a result, the increase in lattice entropy associated with the Fe subsystem is significant and contributes cooperatively with the magnetic and electronic entropy changes to the excellent magneto- and barocaloric properties.

Authors:
 [1];  [2];  [3];  [4];  [4];  [2];  [4];  [5];  [5];  [5];  [6];  [7];  [4]
  1. Univ. of Duisburg-Essen, Duisburg (Germany); IFW Dresden, Dresden (Germany)
  2. Univ. of Duisburg-Essen, Duisburg (Germany); Max Planck Institute of Microstructure Physics, Halle (Germany)
  3. Ruhr-Univ. Bochum, Bochum (Germany)
  4. Univ. of Duisburg-Essen, Duisburg (Germany)
  5. Argonne National Lab. (ANL), Argonne, IL (United States)
  6. IFW Dresden, Dresden (Germany)
  7. TU Darmstadt, Darmstadt (Germany)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
Argonne National Laboratory - Advanced Photon Source; USDOE
OSTI Identifier:
1362293
Alternate Identifier(s):
OSTI ID: 1180313
Grant/Contract Number:
AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 114; Journal Issue: 5; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Gruner, Markus E., Keune, Werner, Cuenya, B. Roldan, Weis, C., Landers, Joachim A., Makarov, S. I., Klar, David, Hu, M. Y., Alp, E. E., Zhao, Jiyong, Krautz, M., Gutfleisch, O., and Wende, Heiko. Element-resolved thermodynamics of magnetocaloric LaFe13–xSix. United States: N. p., 2015. Web. doi:10.1103/PhysRevLett.114.057202.
Gruner, Markus E., Keune, Werner, Cuenya, B. Roldan, Weis, C., Landers, Joachim A., Makarov, S. I., Klar, David, Hu, M. Y., Alp, E. E., Zhao, Jiyong, Krautz, M., Gutfleisch, O., & Wende, Heiko. Element-resolved thermodynamics of magnetocaloric LaFe13–xSix. United States. doi:10.1103/PhysRevLett.114.057202.
Gruner, Markus E., Keune, Werner, Cuenya, B. Roldan, Weis, C., Landers, Joachim A., Makarov, S. I., Klar, David, Hu, M. Y., Alp, E. E., Zhao, Jiyong, Krautz, M., Gutfleisch, O., and Wende, Heiko. Wed . "Element-resolved thermodynamics of magnetocaloric LaFe13–xSix". United States. doi:10.1103/PhysRevLett.114.057202. https://www.osti.gov/servlets/purl/1362293.
@article{osti_1362293,
title = {Element-resolved thermodynamics of magnetocaloric LaFe13–xSix},
author = {Gruner, Markus E. and Keune, Werner and Cuenya, B. Roldan and Weis, C. and Landers, Joachim A. and Makarov, S. I. and Klar, David and Hu, M. Y. and Alp, E. E. and Zhao, Jiyong and Krautz, M. and Gutfleisch, O. and Wende, Heiko},
abstractNote = {By combination of two independent approaches, nuclear resonant inelastic x-ray scattering and first-principles calculations in the framework of density functional theory, we demonstrate significant changes in the element-resolved vibrational density of states across the first-order transition from the ferromagnetic low temperature to the paramagnetic high temperature phase of LaFe13-xSix. These changes originate from the itinerant electron metamagnetism associated with Fe and lead to a pronounced magneto-elastic softening despite the large volume decrease at the transition. As a result, the increase in lattice entropy associated with the Fe subsystem is significant and contributes cooperatively with the magnetic and electronic entropy changes to the excellent magneto- and barocaloric properties.},
doi = {10.1103/PhysRevLett.114.057202},
journal = {Physical Review Letters},
number = 5,
volume = 114,
place = {United States},
year = {Wed Feb 04 00:00:00 EST 2015},
month = {Wed Feb 04 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share: