skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cosmic-Ray Moisture Probe on North Slope of Alaska Field Campaign Report

Abstract

In September of 2014 a wide-area snow monitoring device was installed at the U.S. Department of Energy (DOE)’s Barrow, Alaska Atmospheric Radiation Measurement (ARM) Climate Research Facility site. The device is special in that it uses measurements of cosmic-ray neutrons as a proxy for snow water equivalent (SWE) depth. A unique characteristic of the technology is that it integrates over a wide area (as much as 40 ha), in contrast to conventional ground-based technologies, which essentially give point samples. Conventional point-scale technologies are problematic in the Arctic, both because extreme weather conditions are taxing on equipment, and because point measurements can fail to accurately characterize the average SWE over a larger area, even when excellent precision is obtained. The sensor installed in Barrow is, by far, the northernmost of a constellation of sites that makeup the U.S. COsmic ray Soil Moisture Observing System (COSMOS). The sensor is used for SWE measurements in winter and soil moisture measurements in summer. The ability of this type of sensor to operate in the Arctic had not been verified until now. The cosmic-ray sensor was installed on a tripod located approximately 150 m south of the ARM User Facility (Figure 1), and within boundariesmore » of land managed by the ARM Facility. The sensor consists of both “bare” and “moderated” channels, where the moderated channel is the primary output used to calculate SWE. A QDL2100 data logger with pressure sensor was located inside of the User Facility, and a Campbell CS215 temperature and humidity sensor was attached to a rail on the upper deck of the User Facility, to enable near-real-time absolute humidity corrections to the data. The cosmic-ray sensors are connected to the data logger using an armored Cat5e cable that lies on top of the tundra. Data are retrieved hourly via Iridium satellite link.« less

Authors:
 [1]
  1. Hydroinnova LLC
Publication Date:
Research Org.:
DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1362290
Report Number(s):
DOE/SC-ARM-17-021
DOE Contract Number:
AC05-7601830
Resource Type:
Program Document
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES; "North Slope of Alaska, Barrow, soil moisture, cosmic rays, snow water equivalent, COsmic ray Soil Moisture Observing System (COSMOS)"

Citation Formats

Desilets, Darin. Cosmic-Ray Moisture Probe on North Slope of Alaska Field Campaign Report. United States: N. p., 2016. Web.
Desilets, Darin. Cosmic-Ray Moisture Probe on North Slope of Alaska Field Campaign Report. United States.
Desilets, Darin. 2016. "Cosmic-Ray Moisture Probe on North Slope of Alaska Field Campaign Report". United States. doi:. https://www.osti.gov/servlets/purl/1362290.
@article{osti_1362290,
title = {Cosmic-Ray Moisture Probe on North Slope of Alaska Field Campaign Report},
author = {Desilets, Darin},
abstractNote = {In September of 2014 a wide-area snow monitoring device was installed at the U.S. Department of Energy (DOE)’s Barrow, Alaska Atmospheric Radiation Measurement (ARM) Climate Research Facility site. The device is special in that it uses measurements of cosmic-ray neutrons as a proxy for snow water equivalent (SWE) depth. A unique characteristic of the technology is that it integrates over a wide area (as much as 40 ha), in contrast to conventional ground-based technologies, which essentially give point samples. Conventional point-scale technologies are problematic in the Arctic, both because extreme weather conditions are taxing on equipment, and because point measurements can fail to accurately characterize the average SWE over a larger area, even when excellent precision is obtained. The sensor installed in Barrow is, by far, the northernmost of a constellation of sites that makeup the U.S. COsmic ray Soil Moisture Observing System (COSMOS). The sensor is used for SWE measurements in winter and soil moisture measurements in summer. The ability of this type of sensor to operate in the Arctic had not been verified until now. The cosmic-ray sensor was installed on a tripod located approximately 150 m south of the ARM User Facility (Figure 1), and within boundaries of land managed by the ARM Facility. The sensor consists of both “bare” and “moderated” channels, where the moderated channel is the primary output used to calculate SWE. A QDL2100 data logger with pressure sensor was located inside of the User Facility, and a Campbell CS215 temperature and humidity sensor was attached to a rail on the upper deck of the User Facility, to enable near-real-time absolute humidity corrections to the data. The cosmic-ray sensors are connected to the data logger using an armored Cat5e cable that lies on top of the tundra. Data are retrieved hourly via Iridium satellite link.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 6
}

Program Document:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that may hold this item.

Save / Share:
  • Atmospheric temperatures are warming faster in the Arctic than predicted by climate models. The impact of this warming on permafrost degradation is not well understood, but it is projected to increase carbon decomposition and greenhouse gas production (CO2 and/or CH4) by arctic ecosystems. Airborne observations of atmospheric trace gases, aerosols and cloud properties in North Slopes of Alaska (NSA) are improving our understanding of global climate, with the goal of reducing the uncertainty in global and regional climate simulations and projections. From June 1 through September 15, 2015, AAF deployed the G1 research aircraft and flew over the North Slopemore » of Alaska (38 flights, 140 science flight hours), with occasional vertical profiling over Prudhoe Bay, Oliktok point, Barrow, Atqasuk, Ivotuk, and Toolik Lake. The aircraft payload included Picarro and Los Gatos Research (LGR) analyzers for continuous measurements of CO2, CH4, H2O, and CO and N2O mixing ratios, and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, and trace hydrocarbon species). The aircraft payload also include measurements of aerosol properties (number size distribution, total number concentration, absorption, and scattering), cloud properties (droplet and ice size information), atmospheric thermodynamic state, and solar/infrared radiation.« less
  • The campaign was motivated by the need to improve the quantification of measurements of ice-phase precipitation in the Arctic and was by the acquisition and deployment of the new X- and Ka/W-band radars. These radars opened up an opportunity for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility to obtain spatial estimates of snowfall rates using the polarimetric X-band measurements and dual-frequency measurements (using different combinations of the three wavelengths). However, calculations of X- and Ka-band radar back-scattering of ice crystal aggregates with their complex structure suggest that the commonly used T-matrix approach (Matrosov etmore » al. 2007) for modeling the radar back-scattering underestimates the reflectivity by several decibels, with errors increasing with increasing radar frequency (Botta et al. 2010, 2011). Moreover, the X-band polarimetric measurements and the Ka/W-band measurements are sensitive to the assumed shape of the snow (Botta et al. 2011). One of the five ARM two-dimensional video disdrometers (manufactured by Joanneum Research) were deployed in Barrow at the ARM North Slope of Alaska (NSA) site from 1 October, 2011 to 31 May, 2012 in an attempt to use the instrument in a novel way. The instrument was originally designed to measure the drop size distribution of rain but it seemed worthwhile to explore its capability to quantify ice precipitation particle size and shape distributions in the cold north for scattering calculations and precipitation estimations. Furthermore, this deployment gave us an opportunity to see how reliable it could be in arctic conditions.« less
  • The goal of the North Slope Hydrate Study is to evaluate the methane hydrate potential of the Walakpa gas field, a shallow gas field located near Barrow, Alaska. Observing, understanding, and predicting the production characteristics of the Walakpa field will be accomplished by the analysis of the reservoir geology, and of the individual well production data, derived from reservoir engineering studies conducted in the field.
  • The goal of the North Slope Hydrate Study is to evaluate the methane hydrate potential of the Walakpa gas field, a shallow gas field located near Barrow, Alaska. Observing, understanding, and predicting the production characteristics of the Walakpa field will be accomplished by the analysis of the reservoir geology, and of the individual well production data, derived from reservoir engineering studies conducted in the field.
  • The study examines relationships between petroleum development and the evolution of local government institutions on Alaska's North Slope in the decade since the oil and gas discoveries at Prudhoe Bay in 1968. It focuses on the North Slope Borough, and it attempts to explain the formation and major operations of the borough essentially as responses to the problems and opportunities that arctic oil and gas development present to the Native people of the region.