skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Imaging at an x-ray absorption edge using free electron laser pulses for interface dynamics in high energy density systems [Resonant phase contrast imaging for interface physics]

Abstract

Tuning the energy of an x-ray probe to an absorption line or edge can provide material-specific measurements that are particularly useful for interfaces. Simulated hard x-ray images above the Fe K-edge are presented to examine ion diffusion across an interface between Fe 2O 3 and SiO 2 aerogel foam materials. The simulations demonstrate the feasibility of such a technique for measurements of density scale lengths near the interface with submicron spatial resolution. A proof-of-principle experiment is designed and performed at the Linac coherent light source facility. Preliminary data show the change of the interface after shock compression and heating with simultaneous fluorescence spectra for temperature determination. Here, the results provide the first demonstration of using x-ray imaging at an absorption edge as a diagnostic to detect ultrafast phenomena for interface physics in high-energy-density systems.

Authors:
 [1]; ORCiD logo [1];  [2];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [3]; ORCiD logo [3];  [3];  [3];  [3];  [3]; ORCiD logo [4];  [5];  [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. European XFEL, Schenefeld (Germany)
  5. Gwangju Institute of Science and Technology, Gwangju (South Korea)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1361852
Alternate Identifier(s):
OSTI ID: 1369466; OSTI ID: 1421015
Grant/Contract Number:  
AC02-76SF00515; 05K13OD2; 2016R1A2B4009631; SCHR 1137/1-1; ECRP; SF00515; 14-SI-003
Resource Type:
Journal Article: Published Article
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 88; Journal Issue: 5; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 36 MATERIALS SCIENCE

Citation Formats

Beckwith, M. A., Jiang, S., Schropp, A., Fernandez-Panella, A., Rinderknecht, H. G., Wilks, S. C., Fournier, K. B., Galtier, E. C., Xing, Z., Granados, E., Gamboa, E., Glenzer, S. H., Heimann, P., Zastrau, U., Cho, B. I., Eggert, J. H., Collins, G. W., and Ping, Y.. Imaging at an x-ray absorption edge using free electron laser pulses for interface dynamics in high energy density systems [Resonant phase contrast imaging for interface physics]. United States: N. p., 2017. Web. doi:10.1063/1.4982166.
Beckwith, M. A., Jiang, S., Schropp, A., Fernandez-Panella, A., Rinderknecht, H. G., Wilks, S. C., Fournier, K. B., Galtier, E. C., Xing, Z., Granados, E., Gamboa, E., Glenzer, S. H., Heimann, P., Zastrau, U., Cho, B. I., Eggert, J. H., Collins, G. W., & Ping, Y.. Imaging at an x-ray absorption edge using free electron laser pulses for interface dynamics in high energy density systems [Resonant phase contrast imaging for interface physics]. United States. doi:10.1063/1.4982166.
Beckwith, M. A., Jiang, S., Schropp, A., Fernandez-Panella, A., Rinderknecht, H. G., Wilks, S. C., Fournier, K. B., Galtier, E. C., Xing, Z., Granados, E., Gamboa, E., Glenzer, S. H., Heimann, P., Zastrau, U., Cho, B. I., Eggert, J. H., Collins, G. W., and Ping, Y.. Mon . "Imaging at an x-ray absorption edge using free electron laser pulses for interface dynamics in high energy density systems [Resonant phase contrast imaging for interface physics]". United States. doi:10.1063/1.4982166.
@article{osti_1361852,
title = {Imaging at an x-ray absorption edge using free electron laser pulses for interface dynamics in high energy density systems [Resonant phase contrast imaging for interface physics]},
author = {Beckwith, M. A. and Jiang, S. and Schropp, A. and Fernandez-Panella, A. and Rinderknecht, H. G. and Wilks, S. C. and Fournier, K. B. and Galtier, E. C. and Xing, Z. and Granados, E. and Gamboa, E. and Glenzer, S. H. and Heimann, P. and Zastrau, U. and Cho, B. I. and Eggert, J. H. and Collins, G. W. and Ping, Y.},
abstractNote = {Tuning the energy of an x-ray probe to an absorption line or edge can provide material-specific measurements that are particularly useful for interfaces. Simulated hard x-ray images above the Fe K-edge are presented to examine ion diffusion across an interface between Fe2O3 and SiO2 aerogel foam materials. The simulations demonstrate the feasibility of such a technique for measurements of density scale lengths near the interface with submicron spatial resolution. A proof-of-principle experiment is designed and performed at the Linac coherent light source facility. Preliminary data show the change of the interface after shock compression and heating with simultaneous fluorescence spectra for temperature determination. Here, the results provide the first demonstration of using x-ray imaging at an absorption edge as a diagnostic to detect ultrafast phenomena for interface physics in high-energy-density systems.},
doi = {10.1063/1.4982166},
journal = {Review of Scientific Instruments},
number = 5,
volume = 88,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2017},
month = {Mon May 01 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1063/1.4982166

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share: