skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Roll-to-roll light directed electrophoretic deposition system and method

Abstract

A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.

Inventors:
;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1361547
Patent Number(s):
9,670,587
Application Number:
15/015,062
Assignee:
Lawrence Levermore National Security, LLC LLNL
DOE Contract Number:
AC52-07NA27344
Resource Type:
Patent
Resource Relation:
Patent File Date: 2016 Feb 03
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Pascall, Andrew J., and Kuntz, Joshua. Roll-to-roll light directed electrophoretic deposition system and method. United States: N. p., 2017. Web.
Pascall, Andrew J., & Kuntz, Joshua. Roll-to-roll light directed electrophoretic deposition system and method. United States.
Pascall, Andrew J., and Kuntz, Joshua. Tue . "Roll-to-roll light directed electrophoretic deposition system and method". United States. doi:. https://www.osti.gov/servlets/purl/1361547.
@article{osti_1361547,
title = {Roll-to-roll light directed electrophoretic deposition system and method},
author = {Pascall, Andrew J. and Kuntz, Joshua},
abstractNote = {A roll-to-roll light directed electrophoretic deposition system and method advances a roll of a flexible electrode web substrate along a roll-to-roll process path, where a material source is positioned to provide on the flexible electrode web substrate a thin film colloidal dispersion of electrically charged colloidal material dispersed in a fluid. A counter electrode is also positioned to come in contact with the thin film colloidal dispersion opposite the flexible electrode web substrate, where one of the counter electrode and the flexible electrode web substrate is a photoconductive electrode. A voltage source is connected to produce an electric potential between the counter electrode and the flexible electrode web substrate to induce electrophoretic deposition on the flexible electrode web substrate when the photoconductive electrode is rendered conductive, and a patterned light source is arranged to illuminate the photoconductive electrode with a light pattern and render conductive illuminated areas of the photoconductive electrode so that a patterned deposit of the electrically charged colloidal material is formed on the flexible electrode web substrate.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jun 06 00:00:00 EDT 2017},
month = {Tue Jun 06 00:00:00 EDT 2017}
}

Patent:

Save / Share:
  • A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent atmore » the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit.« less
  • A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent atmore » the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit. 10 figs.« less
  • Systems, methods, and user interfaces are used for controlling a robot. An environment map and a robot designator are presented to a user. The user may place, move, and modify task designators on the environment map. The task designators indicate a position in the environment map and indicate a task for the robot to achieve. A control intermediary links task designators with robot instructions issued to the robot. The control intermediary analyzes a relative position between the task designators and the robot. The control intermediary uses the analysis to determine a task-oriented autonomy level for the robot and communicates targetmore » achievement information to the robot. The target achievement information may include instructions for directly guiding the robot if the task-oriented autonomy level indicates low robot initiative and may include instructions for directing the robot to determine a robot plan for achieving the task if the task-oriented autonomy level indicates high robot initiative.« less