skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum spin Hall phase in 2D trigonal lattice

Abstract

The quantum spin Hall (QSH) phase is an exotic phenomena in condensed-matter physics. Here we show that a minimal basis of three orbitals (s, p x, p y) is required to produce a QSH phase via nearest-neighbour hopping in a two-dimensional trigonal lattice. Tight-binding model analyses and calculations show that the QSH phase arises from a spin–orbit coupling (SOC)-induced s–p band inversion or p–p bandgap opening at Brillouin zone centre (Γ point), whose topological phase diagram is mapped out in the parameter space of orbital energy and SOC. Remarkably, based on first-principles calculations, this exact model of QSH phase is shown to be realizable in an experimental system of Au/GaAs(111) surface with an SOC gap of ~73 meV, facilitating the possible room-temperature measurement. Finally, our results will extend the search for substrate supported QSH materials to new lattice and orbital types.

Authors:
 [1];  [2];  [3]
  1. Univ. of Science and Technology of China, Anhui (China); Univ. of Utah, Salt Lake City, UT (United States)
  2. Univ. of Utah, Salt Lake City, UT (United States)
  3. Univ. of Utah, Salt Lake City, UT (United States); Collaborative Innovation Center of Quantum Matter, Beijing (China)
Publication Date:
Research Org.:
Univ. of Utah, Salt Lake City, UT (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1361410
Grant/Contract Number:
FG02-04ER46148
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; electronic structure; topological insulators

Citation Formats

Wang, Z. F., Jin, Kyung -Hwan, and Liu, Feng. Quantum spin Hall phase in 2D trigonal lattice. United States: N. p., 2016. Web. doi:10.1038/ncomms12746.
Wang, Z. F., Jin, Kyung -Hwan, & Liu, Feng. Quantum spin Hall phase in 2D trigonal lattice. United States. doi:10.1038/ncomms12746.
Wang, Z. F., Jin, Kyung -Hwan, and Liu, Feng. 2016. "Quantum spin Hall phase in 2D trigonal lattice". United States. doi:10.1038/ncomms12746. https://www.osti.gov/servlets/purl/1361410.
@article{osti_1361410,
title = {Quantum spin Hall phase in 2D trigonal lattice},
author = {Wang, Z. F. and Jin, Kyung -Hwan and Liu, Feng},
abstractNote = {The quantum spin Hall (QSH) phase is an exotic phenomena in condensed-matter physics. Here we show that a minimal basis of three orbitals (s, px, py) is required to produce a QSH phase via nearest-neighbour hopping in a two-dimensional trigonal lattice. Tight-binding model analyses and calculations show that the QSH phase arises from a spin–orbit coupling (SOC)-induced s–p band inversion or p–p bandgap opening at Brillouin zone centre (Γ point), whose topological phase diagram is mapped out in the parameter space of orbital energy and SOC. Remarkably, based on first-principles calculations, this exact model of QSH phase is shown to be realizable in an experimental system of Au/GaAs(111) surface with an SOC gap of ~73 meV, facilitating the possible room-temperature measurement. Finally, our results will extend the search for substrate supported QSH materials to new lattice and orbital types.},
doi = {10.1038/ncomms12746},
journal = {Nature Communications},
number = ,
volume = 7,
place = {United States},
year = 2016,
month = 9
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2works
Citation information provided by
Web of Science

Save / Share:
  • Cited by 5
  • We propose a model which includes a nearest-neighbor intrinsic spin-orbit coupling and a trimerized Hamiltonian in the kagome lattice and promises to host the transition from the quantum spin Hall insulator to the normal insulator. In addition, we design an experimental scheme to simulate and detect this transition in the ultracold atom system. The lattice intrinsic spin-orbit coupling is generated via the laser-induced-gauge-field method. Furthermore, we establish the connection between the spin Chern number and the spin-atomic density which enables us to detect the quantum spin Hall insulator directly by the standard density-profile technique used in atomic systems.
  • We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties distinct from those of conventional insulators, can be realized in mercury telluride-cadmium telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the electronic state changes from a normal to an 'inverted' type at a critical thickness d{sub c}. We show that this transition is a topological quantum phase transition between a conventional insulating phase and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss methods for experimental detection of the QSH effect.
  • Spin Hall effect can be induced both by the extrinsic impurity scattering and by the intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. This difference gives a direct mechanism to experimentally distinguish the intrinsic spin Hall effect from the extrinsic one.