skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum spin Hall phase in 2D trigonal lattice

Abstract

The quantum spin Hall (QSH) phase is an exotic phenomena in condensed-matter physics. Here we show that a minimal basis of three orbitals (s, p x, p y) is required to produce a QSH phase via nearest-neighbour hopping in a two-dimensional trigonal lattice. Tight-binding model analyses and calculations show that the QSH phase arises from a spin–orbit coupling (SOC)-induced s–p band inversion or p–p bandgap opening at Brillouin zone centre (Γ point), whose topological phase diagram is mapped out in the parameter space of orbital energy and SOC. Remarkably, based on first-principles calculations, this exact model of QSH phase is shown to be realizable in an experimental system of Au/GaAs(111) surface with an SOC gap of ~73 meV, facilitating the possible room-temperature measurement. Finally, our results will extend the search for substrate supported QSH materials to new lattice and orbital types.

Authors:
 [1];  [2];  [3]
  1. Univ. of Science and Technology of China, Anhui (China); Univ. of Utah, Salt Lake City, UT (United States)
  2. Univ. of Utah, Salt Lake City, UT (United States)
  3. Univ. of Utah, Salt Lake City, UT (United States); Collaborative Innovation Center of Quantum Matter, Beijing (China)
Publication Date:
Research Org.:
Univ. of Utah, Salt Lake City, UT (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1361410
Grant/Contract Number:  
FG02-04ER46148
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; electronic structure; topological insulators

Citation Formats

Wang, Z. F., Jin, Kyung -Hwan, and Liu, Feng. Quantum spin Hall phase in 2D trigonal lattice. United States: N. p., 2016. Web. doi:10.1038/ncomms12746.
Wang, Z. F., Jin, Kyung -Hwan, & Liu, Feng. Quantum spin Hall phase in 2D trigonal lattice. United States. doi:10.1038/ncomms12746.
Wang, Z. F., Jin, Kyung -Hwan, and Liu, Feng. Wed . "Quantum spin Hall phase in 2D trigonal lattice". United States. doi:10.1038/ncomms12746. https://www.osti.gov/servlets/purl/1361410.
@article{osti_1361410,
title = {Quantum spin Hall phase in 2D trigonal lattice},
author = {Wang, Z. F. and Jin, Kyung -Hwan and Liu, Feng},
abstractNote = {The quantum spin Hall (QSH) phase is an exotic phenomena in condensed-matter physics. Here we show that a minimal basis of three orbitals (s, px, py) is required to produce a QSH phase via nearest-neighbour hopping in a two-dimensional trigonal lattice. Tight-binding model analyses and calculations show that the QSH phase arises from a spin–orbit coupling (SOC)-induced s–p band inversion or p–p bandgap opening at Brillouin zone centre (Γ point), whose topological phase diagram is mapped out in the parameter space of orbital energy and SOC. Remarkably, based on first-principles calculations, this exact model of QSH phase is shown to be realizable in an experimental system of Au/GaAs(111) surface with an SOC gap of ~73 meV, facilitating the possible room-temperature measurement. Finally, our results will extend the search for substrate supported QSH materials to new lattice and orbital types.},
doi = {10.1038/ncomms12746},
journal = {Nature Communications},
issn = {2041-1723},
number = ,
volume = 7,
place = {United States},
year = {2016},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Quantum Spin Hall Effect in Graphene
journal, November 2005


Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells
journal, December 2006

  • Bernevig, B. A.; Hughes, T. L.; Zhang, S.-C.
  • Science, Vol. 314, Issue 5806, p. 1757-1761
  • DOI: 10.1126/science.1133734

Quantum Spin Hall Insulator State in HgTe Quantum Wells
journal, November 2007


Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"
journal, October 1988


Evidence for Helical Edge Modes in Inverted InAs / GaSb Quantum Wells
journal, September 2011


Quantum Spin Hall Effect and Enhanced Magnetic Response by Spin-Orbit Coupling
journal, December 2006


Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium
journal, August 2011


Organic topological insulators in organometallic lattices
journal, February 2013

  • Wang, Z. F.; Liu, Zheng; Liu, Feng
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2451

Prediction of a Two-Dimensional Organic Topological Insulator
journal, May 2013

  • Wang, Z. F.; Su, Ninghai; Liu, Feng
  • Nano Letters, Vol. 13, Issue 6, p. 2842-2845
  • DOI: 10.1021/nl401147u

Proximity-induced giant spin-orbit interaction in epitaxial graphene on a topological insulator
journal, February 2013


Large-Gap Quantum Spin Hall Insulators in Tin Films
journal, September 2013


Prediction of Large-Gap Two-Dimensional Topological Insulators Consisting of Bilayers of Group III Elements with Bi
journal, April 2014

  • Chuang, Feng-Chuan; Yao, Liang-Zi; Huang, Zhi-Quan
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl500206u

Functionalized germanene as a prototype of large-gap two-dimensional topological insulators
journal, March 2014


Epitaxial growth of large-gap quantum spin Hall insulator on semiconductor surface
journal, September 2014

  • Zhou, Miao; Ming, Wenmei; Liu, Zheng
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 40
  • DOI: 10.1073/pnas.1409701111

Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling
journal, November 2014

  • Zhou, Miao; Ming, Wenmei; Liu, Zheng
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep07102

The nontrivial electronic structure of Bi/Sb honeycombs on SiC(0001)
journal, February 2015


Robust Large Gap Two-Dimensional Topological Insulators in Hydrogenated III–V Buckled Honeycombs
journal, September 2015


Large-gap quantum spin Hall states in decorated stanene grown on a substrate
journal, August 2015


Topological phases in two-dimensional materials: a review
journal, May 2016


Robust Two-Dimensional Topological Insulators in Methyl-Functionalized Bismuth, Antimony, and Lead Bilayer Films
journal, January 2015

  • Ma, Yandong; Dai, Ying; Kou, Liangzhi
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl504037u

Strain-driven band inversion and topological aspects in Antimonene
journal, November 2015

  • Zhao, Mingwen; Zhang, Xiaoming; Li, Linyang
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep16108

Quantum anomalous Hall effect and related topological electronic states
journal, May 2015


Au wetting and nanoparticle stability on GaAs(111)B
journal, December 2006

  • Hilner, E.; Mikkelsen, A.; Eriksson, J.
  • Applied Physics Letters, Vol. 89, Issue 25
  • DOI: 10.1063/1.2416315

Stable Nontrivial Z 2 Topology in Ultrathin Bi (111) Films: A First-Principles Study
journal, September 2011


Topological states of non-Dirac electrons on a triangular lattice
journal, January 2016


Topological field theory of time-reversal invariant insulators
journal, November 2008

  • Qi, Xiao-Liang; Hughes, Taylor L.; Zhang, Shou-Cheng
  • Physical Review B, Vol. 78, Issue 19, Article No. 195424
  • DOI: 10.1103/PhysRevB.78.195424

s d 2 Graphene: Kagome Band in a Hexagonal Lattice
journal, December 2014


Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics
journal, July 2015


A Strategy to Create Spin-Split Metallic Bands on Silicon Using a Dense Alloy Layer
journal, April 2014

  • Gruznev, Dimitry V.; Bondarenko, Leonid V.; Matetskiy, Andrey V.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep04742

Selective doping in a surface band and atomic structures of the Ge(111) $(\sqrt{3}\times \sqrt{3})\mathrm{R}3 0^{\circ}$–Au surface
journal, December 2012


wannier90: A tool for obtaining maximally-localised Wannier functions
journal, May 2008

  • Mostofi, Arash A.; Yates, Jonathan R.; Lee, Young-Su
  • Computer Physics Communications, Vol. 178, Issue 9
  • DOI: 10.1016/j.cpc.2007.11.016

Tuning Topological Edge States of Bi(111) Bilayer Film by Edge Adsorption
journal, April 2014

  • Wang, Z. F.; Chen, Li; Liu, Feng
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl5009212

Observation of a universal donor-dependent vibrational mode in graphene
journal, February 2014

  • Fedorov, A. V.; Verbitskiy, N. I.; Haberer, D.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4257

High-temperature superconductivity in potassium-coated multilayer FeSe thin films
journal, June 2015

  • Miyata, Y.; Nakayama, K.; Sugawara, K.
  • Nature Materials, Vol. 14, Issue 8
  • DOI: 10.1038/nmat4302

Spatial and Energy Distribution of Topological Edge States in Single Bi(111) Bilayer
journal, July 2012


One-dimensional topological edge states of bismuth bilayers
journal, August 2014

  • Drozdov, Ilya K.; Alexandradinata, A.; Jeon, Sangjun
  • Nature Physics, Vol. 10, Issue 9
  • DOI: 10.1038/nphys3048

Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film
journal, July 2016

  • Wang, Z. F.; Zhang, Huimin; Liu, Defa
  • Nature Materials, Vol. 15, Issue 9
  • DOI: 10.1038/nmat4686

Spin-polarized quantum well states on Bi 2 x Fe x Se 3
journal, April 2015


Ab initiomolecular dynamics for liquid metals
journal, January 1993


    Works referencing / citing this record:

    Topological phase transition induced by p x,y and p z band inversion in a honeycomb lattice
    journal, January 2019

    • Zhang, Huisheng; Ning, Yaohui; Yang, Wenjia
    • Nanoscale, Vol. 11, Issue 29
    • DOI: 10.1039/c9nr04268g

    Topological phase transition induced by p x,y and p z band inversion in a honeycomb lattice
    journal, January 2019

    • Zhang, Huisheng; Ning, Yaohui; Yang, Wenjia
    • Nanoscale, Vol. 11, Issue 29
    • DOI: 10.1039/c9nr04268g