skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Weighing the giants– V. Galaxy cluster scaling relations

Abstract

Here, we present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data are beginning to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range 0.0 < z < 0.5 is consistent with self-similarity, we find tentative evidence that the luminosity and temperature scatters, respectively, decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examinemore » the scaling relations of redMaPPer richness and Compton Y from Planck. While the richness–mass relation is in excellent agreement with recent work, the measured Y–mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. Furthermore, the latter result is consistent with earlier comparisons of lensing and Planck scaling relation-derived masses.« less

Authors:
 [1];  [2];  [2];  [3];  [4];  [5];  [2];  [6];  [6]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Stanford Univ., Stanford, CA (United States); Stony Brook Univ., Stony Brook, NY (United States)
  4. Argelander-Institute for Astronomy, Bonn (Germany)
  5. Univ. of California, Berkeley, CA (United States)
  6. Institute of Astronomy, Honolulu, HI (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab. (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1361148
Grant/Contract Number:
AC02-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 463; Journal Issue: 4; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; gravitational lensing: weak; galaxies: clusters: intracluster medium; X-rays: galaxies: clusters

Citation Formats

Mantz, Adam B., Allen, Steven W., Morris, R. Glenn, von der Linden, Anja, Applegate, Douglas E., Kelly, Patrick L., Burke, David L., Donovan, David, and Ebeling, Harald. Weighing the giants– V. Galaxy cluster scaling relations. United States: N. p., 2016. Web. doi:10.1093/mnras/stw2250.
Mantz, Adam B., Allen, Steven W., Morris, R. Glenn, von der Linden, Anja, Applegate, Douglas E., Kelly, Patrick L., Burke, David L., Donovan, David, & Ebeling, Harald. Weighing the giants– V. Galaxy cluster scaling relations. United States. doi:10.1093/mnras/stw2250.
Mantz, Adam B., Allen, Steven W., Morris, R. Glenn, von der Linden, Anja, Applegate, Douglas E., Kelly, Patrick L., Burke, David L., Donovan, David, and Ebeling, Harald. 2016. "Weighing the giants– V. Galaxy cluster scaling relations". United States. doi:10.1093/mnras/stw2250. https://www.osti.gov/servlets/purl/1361148.
@article{osti_1361148,
title = {Weighing the giants– V. Galaxy cluster scaling relations},
author = {Mantz, Adam B. and Allen, Steven W. and Morris, R. Glenn and von der Linden, Anja and Applegate, Douglas E. and Kelly, Patrick L. and Burke, David L. and Donovan, David and Ebeling, Harald},
abstractNote = {Here, we present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data are beginning to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range 0.0 < z < 0.5 is consistent with self-similarity, we find tentative evidence that the luminosity and temperature scatters, respectively, decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton Y from Planck. While the richness–mass relation is in excellent agreement with recent work, the measured Y–mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. Furthermore, the latter result is consistent with earlier comparisons of lensing and Planck scaling relation-derived masses.},
doi = {10.1093/mnras/stw2250},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 4,
volume = 463,
place = {United States},
year = 2016,
month = 9
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3works
Citation information provided by
Web of Science

Save / Share:
  • We present constraints on the scaling relations of galaxy cluster X-ray luminosity, temperature and gas mass (and derived quantities) with mass and redshift, employing masses from robust weak gravitational lensing measurements. These are the first such results obtained from an analysis that simultaneously accounts for selection effects and the underlying mass function, and directly incorporates lensing data to constrain total masses. Our constraints on the scaling relations and their intrinsic scatters are in good agreement with previous studies, and reinforce a picture in which departures from self-similar scaling laws are primarily limited to cluster cores. However, the data are beginningmore » to reveal new features that have implications for cluster astrophysics and provide new tests for hydrodynamical simulations. We find a positive correlation in the intrinsic scatters of luminosity and temperature at fixed mass, which is related to the dynamical state of the clusters. While the evolution of the nominal scaling relations over the redshift range 0.0 < z < 0.5 is consistent with self similarity, we find tentative evidence that the luminosity and temperature scatters respectively decrease and increase with redshift. Physically, this likely related to the development of cool cores and the rate of major mergers. We also examine the scaling relations of redMaPPer richness and Compton Y from Planck. While the richness{mass relation is in excellent agreement with recent work, the measured Y {mass relation departs strongly from that assumed in the Planck cluster cosmology analysis. Furthermore, the latter result is consistent with earlier comparisons of lensing and Planck scaling-relation-derived masses.« less
  • We describe a method for measuring the integrated Comptonization (Y (SZ)) of clusters of galaxies from measurements of the Sunyaev-Zel'dovich (SZ) effect in multiple frequency bands and use this method to characterize a sample of galaxy clusters detected in the South Pole Telescope (SPT) data. We use a Markov Chain Monte Carlo method to fit a β-model source profile and integrate Y (SZ) within an angular aperture on the sky. In simulated observations of an SPT-like survey that include cosmic microwave background anisotropy, point sources, and atmospheric and instrumental noise at typical SPT-SZ survey levels, we show that we canmore » accurately recover β-model parameters for inputted clusters. We measure Y (SZ) for simulated semi-analytic clusters and find that Y (SZ) is most accurately determined in an angular aperture comparable to the SPT beam size. We demonstrate the utility of this method to measure Y (SZ) and to constrain mass scaling relations using X-ray mass estimates for a sample of 18 galaxy clusters from the SPT-SZ survey. Measuring Y (SZ) within a 0.'75 radius aperture, we find an intrinsic log-normal scatter of 21% ± 11% in Y (SZ) at a fixed mass. Measuring Y (SZ) within a 0.3 Mpc projected radius (equivalent to 0.'75 at the survey median redshift z = 0.6), we find a scatter of 26% ± 9%. Prior to this study, the SPT observable found to have the lowest scatter with mass was cluster detection significance. We demonstrate, from both simulations and SPT observed clusters that Y (SZ) measured within an aperture comparable to the SPT beam size is equivalent, in terms of scatter with cluster mass, to SPT cluster detection significance.« less
  • We describe a method for measuring the integrated Comptonization (Y {sub SZ}) of clusters of galaxies from measurements of the Sunyaev-Zel'dovich (SZ) effect in multiple frequency bands and use this method to characterize a sample of galaxy clusters detected in the South Pole Telescope (SPT) data. We use a Markov Chain Monte Carlo method to fit a β-model source profile and integrate Y {sub SZ} within an angular aperture on the sky. In simulated observations of an SPT-like survey that include cosmic microwave background anisotropy, point sources, and atmospheric and instrumental noise at typical SPT-SZ survey levels, we show thatmore » we can accurately recover β-model parameters for inputted clusters. We measure Y {sub SZ} for simulated semi-analytic clusters and find that Y {sub SZ} is most accurately determined in an angular aperture comparable to the SPT beam size. We demonstrate the utility of this method to measure Y {sub SZ} and to constrain mass scaling relations using X-ray mass estimates for a sample of 18 galaxy clusters from the SPT-SZ survey. Measuring Y {sub SZ} within a 0.'75 radius aperture, we find an intrinsic log-normal scatter of 21% ± 11% in Y {sub SZ} at a fixed mass. Measuring Y {sub SZ} within a 0.3 Mpc projected radius (equivalent to 0.'75 at the survey median redshift z = 0.6), we find a scatter of 26% ± 9%. Prior to this study, the SPT observable found to have the lowest scatter with mass was cluster detection significance. We demonstrate, from both simulations and SPT observed clusters that Y {sub SZ} measured within an aperture comparable to the SPT beam size is equivalent, in terms of scatter with cluster mass, to SPT cluster detection significance.« less
  • Large future galaxy cluster surveys, combined with cosmic microwave background observations, can achieve a high sensitivity to the masses of cosmologically important neutrinos. We show that a weak lensing selected sample of > or approx. 100,000 clusters could tighten the current upper bound on the sum of masses of neutrino species by an order of magnitude, to a level of 0.03 eV. Since this statistical sensitivity is below the best existing lower limit on the mass of at least one neutrino species, a future detection is likely, provided that systematic errors can be controlled to a similar level.
  • We present a Hubble Space Telescope weak-lensing study of the merging galaxy cluster 'El Gordo' (ACT-CL J0102–4915) at z = 0.87 discovered by the Atacama Cosmology Telescope (ACT) collaboration as the strongest Sunyaev-Zel'dovich decrement in its ∼1000 deg{sup 2} survey. Our weak-lensing analysis confirms that ACT-CL J0102–4915 is indeed an extreme system consisting of two massive (≳ 10{sup 15} M {sub ☉} each) subclusters with a projected separation of ∼0.7 h{sub 70}{sup −1} Mpc. This binary mass structure revealed by our lensing study is consistent with the cluster galaxy distribution and the dynamical study carried out with 89 spectroscopic members.more » We estimate the mass of ACT-CL J0102–4915 by simultaneously fitting two axisymmetric Navarro-Frenk-White (NFW) profiles allowing their centers to vary. We use only a single parameter for the NFW mass profile by enforcing the mass-concentration relation from numerical simulations. Our Markov-Chain-Monte-Carlo analysis shows that the masses of the northwestern (NW) and the southeastern (SE) components are M{sub 200c}=(1.38±0.22)×10{sup 15} h{sub 70}{sup −1} M{sub ⊙} and (0.78±0.20)×10{sup 15} h{sub 70}{sup −1} M{sub ⊙}, respectively, where the quoted errors include only 1σ statistical uncertainties determined by the finite number of source galaxies. These mass estimates are subject to additional uncertainties (20%-30%) due to the possible presence of triaxiality, correlated/uncorrelated large scale structure, and departure of the cluster profile from the NFW model. The lensing-based velocity dispersions are 1133{sub −61}{sup +58} km s{sup −1} and 1064{sub −66}{sup +62} km s{sup −1} for the NW and SE components, respectively, which are consistent with their spectroscopic measurements (1290 ± 134 km s{sup –1} and 1089 ± 200 km s{sup –1}, respectively). The centroids of both components are tightly constrained (∼4'') and close to the optical luminosity centers. The X-ray and mass peaks are spatially offset by ∼8'' (∼62 h{sub 70}{sup −1} kpc), which is significant at the ∼2σ confidence level. The mass peak, however, does not lead the gas peak in the direction expected if we are viewing the cluster soon after first core passage during a high speed merger. Under the assumption that the merger is happening in the plane of the sky, extrapolation of the two NFW halos to a radius r{sub 200a}=2.4 h{sub 70}{sup −1} Mpc yields a combined mass of M{sub 200a}=(3.13±0.56)×10{sup 15} h{sub 70}{sup −1} M{sub ⊙}. This extrapolated total mass is consistent with our two-component-based dynamical analysis and previous X-ray measurements, projecting ACT-CL J0102–4915 to be the most massive cluster at z > 0.6 known to date.« less