skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Classical and quantum stability in putative landscapes

Abstract

Landscape analyses often assume the existence of large numbers of fields, N, with all of the many couplings among these fields (subject to constraints such as local supersymmetry) selected independently and randomly from simple (say Gaussian) distributions. We point out that unitarity and perturbativity place significant constraints on behavior of couplings with N, eliminating otherwise puzzling results. In would-be flux compactifications of string theory, we point out that in order that there be large numbers of light fields, the compactification radii must scale as a positive power of N; scaling of couplings with N may also be necessary for perturbativity. We show that in some simple string theory settings with large numbers of fields, for fixed R and string coupling, one can bound certain sums of squares of couplings by order one numbers. This may argue for strong correlations, possibly calling into question the assumption of uncorrelated distributions. Finally, we consider implications of these considerations for classical and quantum stability of states without supersymmetry, with low energy supersymmetry arising from tuning of parameters, and with dynamical breaking of supersymmetry.

Authors:
 [1]
  1. Univ. of California, Santa Cruz, CA (United States). Santa Cruz Inst. for Particle Physics and Dept. of Physics
Publication Date:
Research Org.:
Univ. of California, Santa Cruz, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1360781
Grant/Contract Number:
SC0010107
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of High Energy Physics (Online)
Additional Journal Information:
Journal Name: Journal of High Energy Physics (Online); Journal Volume: 2017; Journal Issue: 1; Journal ID: ISSN 1029-8479
Publisher:
Springer Berlin
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; Supersymmetric Effective Theories; Supersymmetry Breaking

Citation Formats

Dine, Michael. Classical and quantum stability in putative landscapes. United States: N. p., 2017. Web. doi:10.1007/JHEP01(2017)082.
Dine, Michael. Classical and quantum stability in putative landscapes. United States. doi:10.1007/JHEP01(2017)082.
Dine, Michael. Wed . "Classical and quantum stability in putative landscapes". United States. doi:10.1007/JHEP01(2017)082. https://www.osti.gov/servlets/purl/1360781.
@article{osti_1360781,
title = {Classical and quantum stability in putative landscapes},
author = {Dine, Michael},
abstractNote = {Landscape analyses often assume the existence of large numbers of fields, N, with all of the many couplings among these fields (subject to constraints such as local supersymmetry) selected independently and randomly from simple (say Gaussian) distributions. We point out that unitarity and perturbativity place significant constraints on behavior of couplings with N, eliminating otherwise puzzling results. In would-be flux compactifications of string theory, we point out that in order that there be large numbers of light fields, the compactification radii must scale as a positive power of N; scaling of couplings with N may also be necessary for perturbativity. We show that in some simple string theory settings with large numbers of fields, for fixed R and string coupling, one can bound certain sums of squares of couplings by order one numbers. This may argue for strong correlations, possibly calling into question the assumption of uncorrelated distributions. Finally, we consider implications of these considerations for classical and quantum stability of states without supersymmetry, with low energy supersymmetry arising from tuning of parameters, and with dynamical breaking of supersymmetry.},
doi = {10.1007/JHEP01(2017)082},
journal = {Journal of High Energy Physics (Online)},
number = 1,
volume = 2017,
place = {United States},
year = {Wed Jan 18 00:00:00 EST 2017},
month = {Wed Jan 18 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • Starting from classical lattice systems in d {ge} 2 dimensions with a regular zero-temperature phase diagram, involving a finite number of periodic ground states, we prove that adding a small quantum perturbation and/or increasing the temperature produce only smooth deformations of their phase diagrams. The quantum perturbations can involve bosons or fermions and can be of infinite range but decaying exponentially fast with the size of the bonds. For fermions, the interactions must be given by monomials of even degree in creation and annihilation operators. Our methods can be applied to some anyonic systems as well. Our analysis is basedmore » on an extension of Pirogov-Sinai theory to contour expansions in d+1 dimensions obtained by iteration of the Duhamel formula.« less
  • This paper considers laser-driven optimal control of an ensemble of non-interacting molecules whose dynamics lie in classical phase space. The molecules evolve independently under control to distinct final states. We consider a control landscape defined in terms of multi-target (MT) molecular states and analyze the landscape as a functional of the control field. The topology of the MT control landscape is assessed through its gradient and Hessian with respect to the control. Under particular assumptions, the MT control landscape is found to be free of traps that could hinder reaching the objective. The Hessian associated with an optimal control fieldmore » is shown to have finite rank, indicating an inherent degree of robustness to control noise. Both the absence of traps and rank of the Hessian are shown to be analogous to the situation of specifying multiple targets for an ensemble of quantum states. Numerical simulations are presented to illustrate the classical landscape principles and further characterize the system behavior as the control field is optimized.« less
  • Relations between quantum-mechanical and classical properties of open systems with a saddle-type potential, for which at a given energy only one unstable periodic orbit exists, are studied. By considering the convergence of the Gutzwiller trace formula [J. Math. Phys. 12, 343 (1971)] it is confirmed that both for homogeneous and inhomogeneous potentials the poles of the formula are located below the real energy axis, i.e., these kind of potentials do not support bound states, in general. Within the harmonic approximation the widths of resonant (transition) states are proportional to the values of Lyapunov exponent of the single periodic orbit calculatedmore » at the energies which are equal to the resonance positions. The accuracy of the semiclassical relation is discussed and demonstrated for several examples.« less
  • Here in this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectricmore » constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg 2+ -> Mg +), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI exhibits a significant bond weakening while paired with the transient, partially reduced Mg +. In contrast, BH 4 $-$ and BF 4 $-$ are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.« less
  • E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adoptedmore » a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.« less