skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Degradation mechanism of over-charged LiCoO 2/mesocarbon microbeads battery during shallow depth of discharge cycling

Abstract

LiCoO 2/mesocarbon microbeads (MCMB) batteries are over-charged to different voltage (4.4 V, 4.5 V, 4.6 V, and 4.7 V, respectively) for ten times, and then are cycled 1000 times for shallow depth of discharge. The morphology, structure, and electrochemical performance of the electrode materials were studied in detail in order to identify the capacity fading mechanism of over-charged battery after long-term cycling. The cycling performances of LiCoO 2/MCMB batteries are gradually aggravated with the increase of over-charging voltage and the degradation mechanism is diverse upon the degree of over-charging. Furthermore, the capacity fading after long-term cycling of battery over-charged to 4.6 V or 4.7 V is mainly attributed to the cathodes. Soft X-ray absorption spectroscopy (XAS) demonstrates that the lower valence state of cobalt exists on the surface of the LiCoO 2 after serious over-charging (4.6 V or 4.7 V), and cobalt is dissolved then deposited on the anode according to the result of energy dispersive spectrometry (EDS). But, after shallow over-charging (4.4 V or 4.5 V), the capacity deterioration is proposed as the loss of active lithium, presented by the generation of the SEI film on the anode, which is verified by water washed tests.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [3]
  1. Harbin Inst. of Technology (China). MIIT Key Lab. of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1360192
Grant/Contract Number:
AC02-76SF00515; 2012AA110203; 51202047
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Power Sources
Additional Journal Information:
Journal Volume: 329; Journal Issue: C; Journal ID: ISSN 0378-7753
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; LiCoO2/MCMB battery; Over-charging; Capacity fading mechanism; Long-term cycling; Lithium dendrites; Reduction and dissolution of cobalt

Citation Formats

Zhang, Lingling, Ma, Yulin, Cheng, Xinqun, Cui, Yingzhi, Guan, Ting, Gao, Yunzhi, Du, Chunyu, Yin, Geping, Lin, Feng, and Nordlund, Dennis. Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling. United States: N. p., 2016. Web. doi:10.1016/j.jpowsour.2016.08.030.
Zhang, Lingling, Ma, Yulin, Cheng, Xinqun, Cui, Yingzhi, Guan, Ting, Gao, Yunzhi, Du, Chunyu, Yin, Geping, Lin, Feng, & Nordlund, Dennis. Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling. United States. doi:10.1016/j.jpowsour.2016.08.030.
Zhang, Lingling, Ma, Yulin, Cheng, Xinqun, Cui, Yingzhi, Guan, Ting, Gao, Yunzhi, Du, Chunyu, Yin, Geping, Lin, Feng, and Nordlund, Dennis. 2016. "Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling". United States. doi:10.1016/j.jpowsour.2016.08.030. https://www.osti.gov/servlets/purl/1360192.
@article{osti_1360192,
title = {Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling},
author = {Zhang, Lingling and Ma, Yulin and Cheng, Xinqun and Cui, Yingzhi and Guan, Ting and Gao, Yunzhi and Du, Chunyu and Yin, Geping and Lin, Feng and Nordlund, Dennis},
abstractNote = {LiCoO2/mesocarbon microbeads (MCMB) batteries are over-charged to different voltage (4.4 V, 4.5 V, 4.6 V, and 4.7 V, respectively) for ten times, and then are cycled 1000 times for shallow depth of discharge. The morphology, structure, and electrochemical performance of the electrode materials were studied in detail in order to identify the capacity fading mechanism of over-charged battery after long-term cycling. The cycling performances of LiCoO2/MCMB batteries are gradually aggravated with the increase of over-charging voltage and the degradation mechanism is diverse upon the degree of over-charging. Furthermore, the capacity fading after long-term cycling of battery over-charged to 4.6 V or 4.7 V is mainly attributed to the cathodes. Soft X-ray absorption spectroscopy (XAS) demonstrates that the lower valence state of cobalt exists on the surface of the LiCoO2 after serious over-charging (4.6 V or 4.7 V), and cobalt is dissolved then deposited on the anode according to the result of energy dispersive spectrometry (EDS). But, after shallow over-charging (4.4 V or 4.5 V), the capacity deterioration is proposed as the loss of active lithium, presented by the generation of the SEI film on the anode, which is verified by water washed tests.},
doi = {10.1016/j.jpowsour.2016.08.030},
journal = {Journal of Power Sources},
number = C,
volume = 329,
place = {United States},
year = 2016,
month = 8
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • The charge-discharge reaction mechanism of the graphitized mesocarbon microbead (MCMB) anode was investigated with cyclic voltammetry and X-ray diffractometry. It is concluded that the charge-discharge reaction of graphitized MCMB involves intercalation of lithium, which is essentially similar to that for graphite. However, the in-plane ordering of the stage 1 and 2 Li-GICs (Graphite Intercalation Compounds) obtained from the graphitized MCMB is not LiC{sub 6} like graphite, but is close to LiC{sub 8}, according to the results of both X-ray diffractometry and cyclic voltammetry.
  • Mesocarbon microbeads (MCMB) is one of the promising carbon materials as anodes for rechargeable lithium batteries among commercially available carbon materials. have examined the correlation between carbon structures and charge-discharge characteristics of the MCMBs prepared at different heat-treatment temperatures. It was found that the MCMB heat-treated at 700 C possesses a tremendously high charge-discharge capacity of 750 Ah/kg. This suggests that there is another mechanism for the charge-discharge reaction besides a graphite intercalation compound mechanism which is well known. Therefore, the authors propose a cavity mechanism in which intercrystallite spaces in MCMB are capable of storing lithium species.
  • Among all primary lithium batteries, Li/CF x primary battery possesses the highest energy density of 2180 Wh kg -1. However, a key limitation is its poor rate capability because the cathode material CF x is intrinsically a poor electronic conductor. Here, we developed a so-called “doing subtraction” method to modify the pinecone shaped fluorinated mesocarbon microbead (F-MCMB). The modified fluorinated mesocarbon microbead (MF-MCMB), manifests the advantage of open-framed structure, possesses good electronic conductivity and removes transport barrier for lithium ions. Thus, high capacity performance and excellent rate capability without compromising capacity can be obtained. A capacity of 343 mAhg -1more » and a maximum power density of 54600 W kg -1 are realized at an ultrafast rate of 40 C (28A g -1). Additionally, the MF-MCMB cathode does not show any voltage delay even at 5C during the discharge, which is a remarkable improvement over the state-of-the-art CF xmaterials.« less
  • Carbon/carbon (C/C) composites were prepared from oxidative PAN fiber felts, a resol-type phenolic resin, and mesophase pitch derived from coal tar. In this study, the effects on mesocarbon microbeads (MCMBs), flexural strength, flexural moduli, electric conductivity, and thermal conductivity of C/C composites with a mesophase content ranging from 0 to 30 wt % were examined during pyrolysis. The results show that the C/C composite with the addition of 10-30 wt % mesophase had a higher density, greater stacking size, and higher preferred orientation than the C/C composites without any mesophase during heat treatment. These composites also exhibited an improvement inmore » flexural strength from 19.7 to 30.3%. The flexural moduli of these composites with mesophase added increased by 15.1 to 31.3% compared to that with no mesophase added. These composites also showed improved electric conductivity, from 15.1 to 43.7%, and thermal conductivity, from 12 to 31.3%.« less