skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals

Abstract

Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially increase the science return of upcoming surveys by increasing the number of modes available for model comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this involves high-dimensional loop integrals that are cumbersome to evaluate. Here, trying to simplify this, we show how two-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to low-dimensional, radial integrals. Many of those can be evaluated with a one-dimensional fast Fourier transform, which is significantly faster than the five-dimensional Monte-Carlo integrals that are needed otherwise. The general idea of this fast fourier transform perturbation theory method is to switch between Fourier and position space to avoid convolutions and integrate over orientations, leaving only radial integrals. This reformulation is independent of the underlying shape of the initial linear density power spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We also discuss how to account for halo bias and redshift space distortions.

Authors:
 [1];  [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Berkeley Center for Cosmological Physics, Dept. of Physics; Inst. for Advanced Study, Princeton, NJ (United States)
  2. Stanford Univ., CA (United States). Stanford Inst. for Theoretical Physics and Dept. of Physics; Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1360171
Grant/Contract Number:
AC02-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review D
Additional Journal Information:
Journal Volume: 94; Journal Issue: 10; Journal ID: ISSN 2470-0010
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Schmittfull, Marcel, and Vlah, Zvonimir. Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals. United States: N. p., 2016. Web. doi:10.1103/PhysRevD.94.103530.
Schmittfull, Marcel, & Vlah, Zvonimir. Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals. United States. doi:10.1103/PhysRevD.94.103530.
Schmittfull, Marcel, and Vlah, Zvonimir. 2016. "Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals". United States. doi:10.1103/PhysRevD.94.103530. https://www.osti.gov/servlets/purl/1360171.
@article{osti_1360171,
title = {Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals},
author = {Schmittfull, Marcel and Vlah, Zvonimir},
abstractNote = {Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially increase the science return of upcoming surveys by increasing the number of modes available for model comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this involves high-dimensional loop integrals that are cumbersome to evaluate. Here, trying to simplify this, we show how two-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to low-dimensional, radial integrals. Many of those can be evaluated with a one-dimensional fast Fourier transform, which is significantly faster than the five-dimensional Monte-Carlo integrals that are needed otherwise. The general idea of this fast fourier transform perturbation theory method is to switch between Fourier and position space to avoid convolutions and integrate over orientations, leaving only radial integrals. This reformulation is independent of the underlying shape of the initial linear density power spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We also discuss how to account for halo bias and redshift space distortions.},
doi = {10.1103/PhysRevD.94.103530},
journal = {Physical Review D},
number = 10,
volume = 94,
place = {United States},
year = 2016,
month =
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • Cited by 1
  • We revisit the issue of ripples in the primordial power spectra caused by trans-Planckian physics, and the potential for their detection by future cosmological probes. We find that for reasonably large values of the first slow-roll parameter {epsilon} ({approx}>0.001), a positive detection of trans-Planckian ripples can be made even if the amplitude is as low as 10{sup -4}. Data from the Large Synoptic Survey Telescope (LSST) and the proposed future 21 cm survey with the Fast Fourier Transform Telescope (FFTT) will be particularly useful in this regard. If the scale of inflation is close to its present upper bound, amore » scale of new physics as high as {approx}0.2 M{sub P} could lead to observable signatures.« less
  • We search a sample of photometric luminous red galaxies (LRGs) measured by the Sloan Digital Sky Survey (SDSS) for a quadrupolar anisotropy in the primordial power spectrum, in which P( k-vector ) is an isotropic power spectrum P-bar (k) multiplied by a quadrupolar modulation pattern. We first place limits on the 5 coefficients of a general quadrupole anisotropy. We also consider axisymmetric quadrupoles of the form P( k-vector ) = P-bar (k)(1+g{sub *}[( k-circumflex ⋅ n-circumflex ){sup 2}−(1/3)]) where n-circumflex is the axis of the anisotropy. When we force the symmetry axis n-circumflex to be in the direction (l,b) =more » (94°,26°) identified in the recent Groeneboom et al. analysis of the cosmic microwave background, we find g{sub *} = 0.006±0.036 (1σ). With uniform priors on n-circumflex and g{sub *} we find that −0.41 < g{sub *} < +0.38 with 95% probability, with the wide range due mainly to the large uncertainty of asymmetries aligned with the Galactic Plane. In none of these three analyses do we detect evidence for quadrupolar power anisotropy in large scale structure.« less
  • The influence of large-scale density fluctuations on structure formation on small scales is described by the three-point correlation function (bispectrum) in the so-called ''squeezed configurations,'' in which one wavenumber, say k{sub 3}, is much smaller than the other two, i.e., k{sub 3} << k{sub 1} ≈ k{sub 2}. This bispectrum is generated by non-linear gravitational evolution and possibly also by inflationary physics. In this paper, we use this fact to show that the bispectrum in the squeezed configurations can be measured without employing three-point function estimators. Specifically, we use the ''position-dependent power spectrum,'' i.e., the power spectrum measured in smallermore » subvolumes of the survey (or simulation box), and correlate it with the mean overdensity of the corresponding subvolume. This correlation directly measures an integral of the bispectrum dominated by the squeezed configurations. Measuring this correlation is only slightly more complex than measuring the power spectrum itself, and sidesteps the considerable complexity of the full bispectrum estimation. We use cosmological N-body simulations of collisionless particles with Gaussian initial conditions to show that the measured correlation between the position-dependent power spectrum and the long-wavelength overdensity agrees with the theoretical expectation. The position-dependent power spectrum thus provides a new, efficient, and promising way to measure the squeezed-limit bispectrum from large-scale structure observations such as galaxy redshift surveys.« less
  • We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scalemore » structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agreement within the expected uncertainties. Our approach can in principle be used to precisely infer the relevance of the leading order EFT coefficient(s) using small volume simulations in an 'anisotropic separate universe' framework. Our results suggest that the importance of these coefficient(s) is a ∼ 10% effect, and plausibly smaller.« less