skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: π Berry phase and Zeeman splitting of Weyl semimetal TaP

Abstract

Here, the recent breakthrough in the discovery of Weyl fermions in monopnictide semimetals provides opportunities to explore the exotic properties of relativistic fermions in condensed matter. The chiral anomaly-induced negative magnetoresistance and π Berry phase are two fundamental transport properties associated with the topological characteristics of Weyl semimetals. Since monopnictide semimetals are multiple-band systems, resolving clear Berry phase for each Fermi pocket remains a challenge. Here we report the determination of Berry phases of multiple Fermi pockets of Weyl semimetal TaP through high field quantum transport measurements. We show our TaP single crystal has the signatures of a Weyl state, including light effective quasiparticle masses, ultrahigh carrier mobility, as well as negative longitudinal magnetoresistance. Furthermore, we have generalized the Lifshitz-Kosevich formula for multiple-band Shubnikov-de Haas (SdH) oscillations and extracted the Berry phases of π for multiple Fermi pockets in TaP through the direct fits of the modified LK formula to the SdH oscillations. In high fields, we also probed signatures of Zeeman splitting, from which the Landé g-factor is extracted.

Authors:
 [1];  [1];  [2];  [3];  [3];  [1];  [1];  [2];  [1];  [3];  [1]
  1. Tulane Univ., New Orleans, LA (United States)
  2. Florida State Univ., Tallahassee, FL (United States)
  3. Univ. of New Orleans, New Orleans, LA (United States)
Publication Date:
Research Org.:
Louisiana Board of Regents, Baton Rouge, LA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1360142
Grant/Contract Number:  
SC0012432
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; electronic properties and materials; topological insulators

Citation Formats

Hu, J., Liu, J. Y., Graf, D., Radmanesh, S. M. A., Adams, D. J., Chuang, A., Wang, Y., Chiorescu, I., Wei, J., Spinu, L., and Mao, Z. Q. π Berry phase and Zeeman splitting of Weyl semimetal TaP. United States: N. p., 2016. Web. doi:10.1038/srep18674.
Hu, J., Liu, J. Y., Graf, D., Radmanesh, S. M. A., Adams, D. J., Chuang, A., Wang, Y., Chiorescu, I., Wei, J., Spinu, L., & Mao, Z. Q. π Berry phase and Zeeman splitting of Weyl semimetal TaP. United States. doi:10.1038/srep18674.
Hu, J., Liu, J. Y., Graf, D., Radmanesh, S. M. A., Adams, D. J., Chuang, A., Wang, Y., Chiorescu, I., Wei, J., Spinu, L., and Mao, Z. Q. Mon . "π Berry phase and Zeeman splitting of Weyl semimetal TaP". United States. doi:10.1038/srep18674. https://www.osti.gov/servlets/purl/1360142.
@article{osti_1360142,
title = {π Berry phase and Zeeman splitting of Weyl semimetal TaP},
author = {Hu, J. and Liu, J. Y. and Graf, D. and Radmanesh, S. M. A. and Adams, D. J. and Chuang, A. and Wang, Y. and Chiorescu, I. and Wei, J. and Spinu, L. and Mao, Z. Q.},
abstractNote = {Here, the recent breakthrough in the discovery of Weyl fermions in monopnictide semimetals provides opportunities to explore the exotic properties of relativistic fermions in condensed matter. The chiral anomaly-induced negative magnetoresistance and π Berry phase are two fundamental transport properties associated with the topological characteristics of Weyl semimetals. Since monopnictide semimetals are multiple-band systems, resolving clear Berry phase for each Fermi pocket remains a challenge. Here we report the determination of Berry phases of multiple Fermi pockets of Weyl semimetal TaP through high field quantum transport measurements. We show our TaP single crystal has the signatures of a Weyl state, including light effective quasiparticle masses, ultrahigh carrier mobility, as well as negative longitudinal magnetoresistance. Furthermore, we have generalized the Lifshitz-Kosevich formula for multiple-band Shubnikov-de Haas (SdH) oscillations and extracted the Berry phases of π for multiple Fermi pockets in TaP through the direct fits of the modified LK formula to the SdH oscillations. In high fields, we also probed signatures of Zeeman splitting, from which the Landé g-factor is extracted.},
doi = {10.1038/srep18674},
journal = {Scientific Reports},
issn = {2045-2322},
number = 1,
volume = 6,
place = {United States},
year = {2016},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class
journal, June 2015

  • Huang, Shin-Ming; Xu, Su-Yang; Belopolski, Ilya
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8373

Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates
journal, May 2011


Prediction of a Weyl semimetal in Hg 1 x y Cd x Mn y Te
journal, February 2014


Discovery of a Weyl fermion semimetal and topological Fermi arcs
journal, July 2015


Observation of Weyl nodes in TaAs
journal, August 2015

  • Lv, B. Q.; Xu, N.; Weng, H. M.
  • Nature Physics, Vol. 11, Issue 9
  • DOI: 10.1038/nphys3426

Erratum: Weyl semimetal phase in the non-centrosymmetric compound TaAs
journal, October 2015

  • Yang, L. X.; Liu, Z. K.; Sun, Y.
  • Nature Physics, Vol. 11, Issue 10
  • DOI: 10.1038/nphys3493

The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal
journal, November 1983


Chiral anomaly and classical negative magnetoresistance of Weyl metals
journal, September 2013


Large magnetoresistance over an extended temperature regime in monophosphides of tantalum and niobium
journal, July 2015


Helicity-protected ultrahigh mobility Weyl fermions in NbP
journal, March 2016


Quantal Phase Factors Accompanying Adiabatic Changes
journal, March 1984

  • Berry, M. V.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 392, Issue 1802
  • DOI: 10.1098/rspa.1984.0023

Manifestation of Berry's Phase in Metal Physics
journal, March 1999


Berry phase effects on electronic properties
journal, July 2010


Berry phase of nonideal Dirac fermions in topological insulators
journal, July 2011


Two-dimensional gas of massless Dirac fermions in graphene
journal, November 2005

  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.
  • Nature, Vol. 438, Issue 7065, p. 197-200
  • DOI: 10.1038/nature04233

Experimental observation of the quantum Hall effect and Berry's phase in graphene
journal, November 2005

  • Zhang, Yuanbo; Tan, Yan-Wen; Stormer, Horst L.
  • Nature, Vol. 438, Issue 7065, p. 201-204
  • DOI: 10.1038/nature04235

Quantum Oscillations and Hall Anomaly of Surface States in the Topological Insulator Bi2Te3
journal, July 2010


Gate-tuned normal and superconducting transport at the surface of a topological insulator
journal, September 2011

  • Sacépé, Benjamin; Oostinga, Jeroen B.; Li, Jian
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1586

Anisotropic Dirac Fermions in a Bi Square Net of SrMnBi 2
journal, September 2011


Quantum Transport Evidence for the Three-Dimensional Dirac Semimetal Phase in Cd 3 As 2
journal, December 2014


Linear Magnetoresistance Caused by Mobility Fluctuations in n -Doped Cd 3 As 2
journal, March 2015


Detection of Berry's Phase in a Bulk Rashba Semiconductor
journal, December 2013


Large, non-saturating magnetoresistance in WTe2
journal, September 2014

  • Ali, Mazhar N.; Xiong, Jun; Flynn, Steven
  • Nature, Vol. 514, Issue 7521
  • DOI: 10.1038/nature13763

Magnetotransport of single crystalline NbAs
journal, March 2015


Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP
journal, June 2015

  • Shekhar, Chandra; Nayak, Ajaya K.; Sun, Yan
  • Nature Physics, Vol. 11, Issue 8
  • DOI: 10.1038/nphys3372

Magnetic field effects on transport properties of PtSn 4
journal, January 2012


Anisotropic giant magnetoresistance in NbSb2
journal, December 2014

  • Wang, Kefeng; Graf, D.; Li, Lijun
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep07328

Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2
journal, November 2014

  • Liang, Tian; Gibson, Quinn; Ali, Mazhar N.
  • Nature Materials, Vol. 14, Issue 3
  • DOI: 10.1038/nmat4143

Quantum magnetoresistance
journal, August 1998


Necessary and sufficient condition for longitudinal magnetoresistance
journal, June 2010


Observation of topological transition of Fermi surface from a spindle torus to a torus in bulk Rashba spin-split BiTeCl
journal, July 2015


Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP
journal, February 2016

  • Du, JianHua; Wang, HangDong; Chen, Qin
  • Science China Physics, Mechanics & Astronomy, Vol. 59, Issue 5
  • DOI: 10.1007/s11433-016-5798-4

    Works referencing / citing this record:

    A magnetic topological semimetal Sr1−yMn1−zSb2 (y, z < 0.1)
    journal, July 2017

    • Liu, J. Y.; Hu, J.; Zhang, Q.
    • Nature Materials, Vol. 16, Issue 9
    • DOI: 10.1038/nmat4953

    Anisotropic thermoelectric properties of Weyl semimetal NbX (X = P and As): a potential thermoelectric material
    journal, January 2019

    • Zhou, Yu; Zhao, Ying-Qin; Zeng, Zhao-Yi
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 27
    • DOI: 10.1039/c9cp02020a

    A magnetic topological semimetal Sr1−yMn1−zSb2 (y, z < 0.1)
    journal, July 2017

    • Liu, J. Y.; Hu, J.; Zhang, Q.
    • Nature Materials, Vol. 16, Issue 9
    • DOI: 10.1038/nmat4953

    Anisotropic thermoelectric properties of Weyl semimetal NbX (X = P and As): a potential thermoelectric material
    journal, January 2019

    • Zhou, Yu; Zhao, Ying-Qin; Zeng, Zhao-Yi
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 27
    • DOI: 10.1039/c9cp02020a