skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enabling high energy density Li-ion batteries through Li 2 O activation

Authors:
; ; ; ; ; ; ; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1359606
Grant/Contract Number:
AC02-06CH11357
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Nano Energy
Additional Journal Information:
Journal Volume: 27; Journal Issue: C; Related Information: CHORUS Timestamp: 2017-10-04 16:38:16; Journal ID: ISSN 2211-2855
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English

Citation Formats

Abouimrane, Ali, Cui, Yanjie, Chen, Zonghai, Belharouak, Ilias, Yahia, Hamdi B., Wu, Huiming, Assary, Rajeev, Curtiss, Larry A., and Amine, Khalil. Enabling high energy density Li-ion batteries through Li 2 O activation. Netherlands: N. p., 2016. Web. doi:10.1016/j.nanoen.2016.06.050.
Abouimrane, Ali, Cui, Yanjie, Chen, Zonghai, Belharouak, Ilias, Yahia, Hamdi B., Wu, Huiming, Assary, Rajeev, Curtiss, Larry A., & Amine, Khalil. Enabling high energy density Li-ion batteries through Li 2 O activation. Netherlands. doi:10.1016/j.nanoen.2016.06.050.
Abouimrane, Ali, Cui, Yanjie, Chen, Zonghai, Belharouak, Ilias, Yahia, Hamdi B., Wu, Huiming, Assary, Rajeev, Curtiss, Larry A., and Amine, Khalil. Thu . "Enabling high energy density Li-ion batteries through Li 2 O activation". Netherlands. doi:10.1016/j.nanoen.2016.06.050.
@article{osti_1359606,
title = {Enabling high energy density Li-ion batteries through Li 2 O activation},
author = {Abouimrane, Ali and Cui, Yanjie and Chen, Zonghai and Belharouak, Ilias and Yahia, Hamdi B. and Wu, Huiming and Assary, Rajeev and Curtiss, Larry A. and Amine, Khalil},
abstractNote = {},
doi = {10.1016/j.nanoen.2016.06.050},
journal = {Nano Energy},
number = C,
volume = 27,
place = {Netherlands},
year = {Thu Sep 01 00:00:00 EDT 2016},
month = {Thu Sep 01 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1016/j.nanoen.2016.06.050

Citation Metrics:
Cited by: 6works
Citation information provided by
Web of Science

Save / Share:
  • Lithium oxide (Li2O) is activated in the presence of a layered composite cathode material (HEM) significantly increasing the energy density of lithium-ion batteries. The degree of activation depends on the current rate, electrolyte salt, and anode type. In full-cell tests, the Li2O was used as a lithium source to counter the first-cycle irreversibility of high-capacity composite alloy anodes. When Li2O is mixed with HEM to serve as a cathode, the electrochemical performance was improved in a full cell having an SiO-SnCoC composite as an anode. The mechanism behind the Li2O activation could also explain the first charge plateau and themore » abnormal high capacity associated with these high energy cathode materials.« less
  • Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe 2O 4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn 2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Limore » + ions insert into 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn 2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe 2O 3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe 2O 4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.« less
  • Highlights: • Li{sub 4}Ti{sub 5}O{sub 12}/TiO{sub 2} nanocomposites with high grain boundary density were synthesized. • {sup 7}Li NMR and impedance spectroscopy shows high Li-ion mobility in nanocomposites. • The shape of charge/discharge curves changes for nanocomposites. • Influence of particle size on cycling performance of lithium titanates was shown. • Li{sub 4}Ti{sub 5}O{sub 12}/TiO{sub 2} nanocomposite exhibits good cycling performance and rate capability. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12}/TiO{sub 2} nanocomposites are synthesized by a sol-gel method. The size of Li{sub 4}Ti{sub 5}O{sub 12} and TiO{sub 2} particles is of 4–5 and 7–10 nm, respectively. The obtained materials aremore » characterized by XRD, SEM, HRTEM and BET. Ion mobility of the composites and their performance as anode materials for lithium-ion batteries are studied. According to the conductivity and {sup 7}Li NMR data, Li{sup +} mobility is much higher in the Li{sub 4}Ti{sub 5}O{sub 12}/TiO{sub 2} nanocomposites as compared with that in pure Li{sub 4}Ti{sub 5}O{sub 12}. For Li{sub 4}Ti{sub 5}O{sub 12}/TiO{sub 2} nanocomposites, marked changes in the charge–discharge curves are observed; charge–discharge rate and effective capacity at a high cycling rate are shown to increase. During the first cycle, charge capacity of these materials surpasses the theoretical capacity of Li{sub 4}Ti{sub 5}O{sub 12}. However, this parameter decreases sharply with cycling, whereas the discharge capacity remains almost unchanged. This phenomenon is attributed to the solid electrolyte interphase formation due to a partial electrolyte reduction on the Li{sub 4}Ti{sub 5}O{sub 12}/TiO{sub 2} composite surface.« less
  • Li-substituted layered P2–Na 0.80[Li 0.12Ni 0.22Mn 0.66]O 2 is investigated as an advanced cathode material for Na-ion batteries. Both neutron diffraction and nuclear magnetic resonance (NMR) spectroscopy are used to elucidate the local structure, and they reveal that most of the Li ions are located in transition metal (TM) sites, preferably surrounded by Mn ions. To characterize structural changes occurring upon electrochemical cycling, in situ synchrotron X-ray diffraction is conducted. It is clearly demonstrated that no significant phase transformation is observed up to 4.4 V charge for this material, unlike Li-free P2-type Na cathodes. The presence of monovalent Li ionsmore » in the TM layers allows more Na ions to reside in the prismatic sites, stabilizing the overall charge balance of the compound. Consequently, more Na ions remain in the compound upon charge, the P2 structure is retained in the high voltage region, and the phase transformation is delayed. Ex situ NMR is conducted on samples at different states of charge/discharge to track Li-ion site occupation changes. Surprisingly, Li is found to be mobile, some Li ions migrate from the TM layer to the Na layer at high voltage, and yet this process is highly reversible. Novel design principles for Na cathode materials are proposed on the basis of an atomistic level understanding of the underlying electrochemical processes. These principles enable us to devise an optimized, high capacity, and structurally stable compound as a potential cathode material for high-energy Na-ion batteries.« less
  • Ultrahigh energy density batteries based on α-Li{sub x}BN{sub 2} (1 ⩽ x ⩽ 3) positive electrode materials are predicted using density functional theory calculations. The utilization of the reversible LiBN{sub 2} + 2 Li{sup +} + 2 e{sup −} ⇌ Li{sub 3}BN{sub 2} electrochemical cell reaction leads to a voltage of 3.62 V (vs Li/Li{sup +}), theoretical energy densities of 3251 Wh/kg and 5927 Wh/l, with capacities of 899 mAh/g and 1638 mAh/cm{sup 3}, while the cell volume of α-Li{sub 3}BN{sub 2} shrinks only 2.8% per two-electron transfer on charge. These values are far superior to the best existing or theoretically designedmore » intercalation or conversion-based positive electrode materials. For comparison, the theoretical energy density of a Li–O{sub 2}/peroxide battery is 3450 Wh/kg (including the weight of O{sub 2}), that of a Li–S battery is 2600 Wh/kg, that of Li{sub 3}Cr(BO{sub 3})(PO{sub 4}) (one of the best designer intercalation materials) is 1700 Wh/kg, while already commercialized LiCoO{sub 2} allows for 568 Wh/kg. α-Li{sub 3}BN{sub 2} is also known as a good Li-ion conductor with experimentally observed 3 mS/cm ionic conductivity and 78 kJ/mol (≈0.8 eV) activation energy of conduction. The attractive features of α-Li{sub x}BN{sub 2} (1 ⩽ x ⩽ 3) are based on a crystal lattice of 1D conjugated polymers with –Li–N–B–N– repeating units. When some of the Li is deintercalated from α-Li{sub 3}BN{sub 2} the crystal becomes a metallic electron conductor, based on the underlying 1D conjugated π electron system. Thus, α-Li{sub x}BN{sub 2} (1 ⩽ x ⩽ 3) represents a new type of 1D conjugated polymers with significant potential for energy storage and other applications.« less