skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spectral clustering for optical confirmation and redshift estimation of X-ray selected galaxy cluster candidates in the SDSS Stripe 82

Authors:
; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1358806
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Astronomy and Computing
Additional Journal Information:
Journal Volume: 16; Journal Issue: C; Related Information: CHORUS Timestamp: 2017-10-08 21:50:46; Journal ID: ISSN 2213-1337
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English

Citation Formats

Mahmoud, E., Takey, A., and Shoukry, A.. Spectral clustering for optical confirmation and redshift estimation of X-ray selected galaxy cluster candidates in the SDSS Stripe 82. Netherlands: N. p., 2016. Web. doi:10.1016/j.ascom.2016.07.001.
Mahmoud, E., Takey, A., & Shoukry, A.. Spectral clustering for optical confirmation and redshift estimation of X-ray selected galaxy cluster candidates in the SDSS Stripe 82. Netherlands. doi:10.1016/j.ascom.2016.07.001.
Mahmoud, E., Takey, A., and Shoukry, A.. 2016. "Spectral clustering for optical confirmation and redshift estimation of X-ray selected galaxy cluster candidates in the SDSS Stripe 82". Netherlands. doi:10.1016/j.ascom.2016.07.001.
@article{osti_1358806,
title = {Spectral clustering for optical confirmation and redshift estimation of X-ray selected galaxy cluster candidates in the SDSS Stripe 82},
author = {Mahmoud, E. and Takey, A. and Shoukry, A.},
abstractNote = {},
doi = {10.1016/j.ascom.2016.07.001},
journal = {Astronomy and Computing},
number = C,
volume = 16,
place = {Netherlands},
year = 2016,
month = 7
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1016/j.ascom.2016.07.001

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • We present a galaxy catalog simulator that converts N-body simulations with halo and subhalo catalogs into mock, multiband photometric catalogs. The simulator assigns galaxy properties to each subhalo in a way that reproduces the observed cluster galaxy halo occupation distribution, the radial and mass-dependent variation in fractions of blue galaxies, the luminosity functions in the cluster and the field, and the color-magnitude relation in clusters. Moreover, the evolution of these parameters is tuned to match existing observational constraints. Parameterizing an ensemble of cluster galaxy properties enables us to create mock catalogs with variations in those properties, which in turn allowsmore » us to quantify the sensitivity of cluster finding to current observational uncertainties in these properties. Field galaxies are sampled from existing multiband photometric surveys of similar depth. We present an application of the catalog simulator to characterize the selection function and contamination of a galaxy cluster finder that utilizes the cluster red sequence together with galaxy clustering on the sky. We estimate systematic uncertainties in the selection to be at the {<=}15% level with current observational constraints on cluster galaxy populations and their evolution. We find the contamination in this cluster finder to be {approx}35% to redshift z {approx} 0.6. In addition, we use the mock galaxy catalogs to test the optical mass indicator B{sub gc} and a red-sequence redshift estimator. We measure the intrinsic scatter of the B{sub gc}-mass relation to be approximately log normal with {sigma}{sub log10M}{approx}0.25 and we demonstrate photometric redshift accuracies for massive clusters at the {approx}3% level out to z {approx} 0.7.« less
  • We measure the luminosity and color dependence of galaxy clustering in the largest-ever galaxy redshift survey, the main galaxy sample of the Sloan Digital Sky Survey Seventh Data Release. We focus on the projected correlation function w{sub p} (r{sub p}) of volume-limited samples, extracted from the parent sample of {approx}700,000 galaxies over 8000 deg{sup 2}, extending up to redshift of 0.25. We interpret our measurements using halo occupation distribution (HOD) modeling assuming a {Lambda}CDM cosmology (inflationary cold dark matter with a cosmological constant). The amplitude of w{sub p} (r{sub p}) grows slowly with luminosity for L < L{sub *} andmore » increases sharply at higher luminosities, with a large-scale bias factor b(> L) x ({sigma}{sub 8}/0.8) = 1.06 + 0.21(L/L{sub *}){sup 1.12}, where L is the sample luminosity threshold. At fixed luminosity, redder galaxies exhibit a higher amplitude and steeper correlation function, a steady trend that runs through the 'blue cloud' and 'green valley' and continues across the 'red sequence'. The cross-correlation of red and blue galaxies is close to the geometric mean of their autocorrelations, dropping slightly below at r{sub p} < 1 h{sup -1} Mpc. The luminosity trends for the red and blue galaxy populations separately are strikingly different. Blue galaxies show a slow but steady increase of clustering strength with luminosity, with nearly constant shape of w{sub p} (r{sub p}). The large-scale clustering of red galaxies shows little luminosity dependence until a sharp increase at L > 4 L{sub *}, but the lowest luminosity red galaxies (0.04-0.25 L{sub *}) show very strong clustering on small scales (r{sub p} < 2 h{sup -1} Mpc). Most of the observed trends can be naturally understood within the {Lambda}CDM+HOD framework. The growth of w{sub p} (r{sub p}) for higher luminosity galaxies reflects an overall shift in the mass scale of their host dark matter halos, in particular an increase in the minimum host halo mass M{sub min}. The mass at which a halo has, on average, one satellite galaxy brighter than L is M{sub 1} {approx} 17 M{sub min}(L) over most of the luminosity range, with a smaller ratio above L{sub *}. The growth and steepening of w{sub p} (r{sub p}) for redder galaxies reflects the increasing fraction of galaxies that are satellite systems in high-mass halos instead of central systems in low-mass halos, a trend that is especially marked at low luminosities. Our extensive measurements, provided in tabular form, will allow detailed tests of theoretical models of galaxy formation, a firm grounding of semiempirical models of the galaxy population, and new constraints on cosmological parameters from combining real-space galaxy clustering with mass-sensitive statistics such as redshift-space distortions, cluster mass-to-light ratios, and galaxy-galaxy lensing.« less
  • We have discovered an X-ray-selected galaxy cluster with a spectroscopic redshift of 1.753. The redshift is of the brightest cluster galaxy (BCG), which is coincident with the peak of the X-ray surface brightness. We also have concordant photometric redshifts for seven additional candidate cluster members. The X-ray luminosity of the cluster is (3.68 {+-} 0.70) x 10{sup 43} erg s{sup -1} in the 0.1-2.4 keV band. The optical/IR properties of the BCG imply that its formation redshift was {approx}5 if its stars formed in a short burst. This result continues the trend from lower redshift in which the observed propertiesmore » of BCGs are most simply explained by a single monolithic collapse at very high redshift instead of the theoretically preferred gradual hierarchical assembly at later times. However, the models corresponding to different formation redshifts are more clearly separated as our observation epoch approaches the galaxy formation epoch. Although our infrared photometry is not deep enough to define a red sequence, we do identify a few galaxies at the cluster redshift that have the expected red sequence photometric properties.« less
  • We present redshifts and optical richness properties of 21 galaxy clusters uniformly selected by their Sunyaev-Zel'dovich (SZ) signature. These clusters, plus an additional, unconfirmed candidate, were detected in a 178 deg{sup 2} area surveyed by the South Pole Telescope (SPT) in 2008. Using griz imaging from the Blanco Cosmology Survey and from pointed Magellan telescope observations, as well as spectroscopy using Magellan facilities, we confirm the existence of clustered red-sequence galaxies, report red-sequence photometric redshifts, present spectroscopic redshifts for a subsample, and derive R{sub 200} radii and M{sub 200} masses from optical richness. The clusters span redshifts from 0.15 tomore » greater than 1, with a median redshift of 0.74; three clusters are estimated to be at z>1. Redshifts inferred from mean red-sequence colors exhibit 2% rms scatter in {sigma}{sub z}/(1 + z) with respect to the spectroscopic subsample for z < 1. We show that the M{sub 200} cluster masses derived from optical richness correlate with masses derived from SPT data and agree with previously derived scaling relations to within the uncertainties. Optical and infrared imaging is an efficient means of cluster identification and redshift estimation in large SZ surveys, and exploiting the same data for richness measurements, as we have done, will be useful for constraining cluster masses and radii for large samples in cosmological analysis.« less
  • We analyze the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS and LOWZ galaxy sample to obtain constraints on the Hubble expansion rate H(z), the angular-diameter distance DA(z), the normalised growth rate f(z)σ 8(z), and the physical matter density Ω mh 2. In addition, we adopt wide and flat priors on all model parameters in order to ensure the results are those of a `single-probe' galaxy clustering analysis. We also marginalize over three nuisance terms that account for potential observational systematics affecting the measured monopole. However, such Monte Carlo Markov Chainmore » analysis is computationally expensive for advanced theoretical models, thus we develop a new methodology to speed up our analysis.« less