skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In silico environmental chemical science: properties and processes from statistical and computational modelling

Abstract

Quantitative structure–activity relationships (QSARs) have long been used in the environmental sciences. More recently, molecular modeling and chemoinformatic methods have become widespread. These methods have the potential to expand and accelerate advances in environmental chemistry because they complement observational and experimental data with “in silico” results and analysis. The opportunities and challenges that arise at the intersection between statistical and theoretical in silico methods are most apparent in the context of properties that determine the environmental fate and effects of chemical contaminants (degradation rate constants, partition coefficients, toxicities, etc.). The main example of this is the calibration of QSARs using descriptor variable data calculated from molecular modeling, which can make QSARs more useful for predicting property data that are unavailable, but also can make them more powerful tools for diagnosis of fate determining pathways and mechanisms. Emerging opportunities for “in silico environmental chemical science” are to move beyond the calculation of specific chemical properties using statistical models and toward more fully in silico models, prediction of transformation pathways and products, incorporation of environmental factors into model predictions, integration of databases and predictive models into more comprehensive and efficient tools for exposure assessment, and extending the applicability of all the abovemore » from chemicals to biologicals and materials.« less

Authors:
ORCiD logo; ;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
1358499
Report Number(s):
PNNL-SA-126230
Journal ID: ISSN 2050-7887; 49691; KP1704020
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Environmental Science: Processes & Impacts; Journal Volume: 19; Journal Issue: 3
Country of Publication:
United States
Language:
English
Subject:
Environmental Molecular Sciences Laboratory

Citation Formats

Tratnyek, Paul G., Bylaska, Eric J., and Weber, Eric J. In silico environmental chemical science: properties and processes from statistical and computational modelling. United States: N. p., 2017. Web. doi:10.1039/c7em00053g.
Tratnyek, Paul G., Bylaska, Eric J., & Weber, Eric J. In silico environmental chemical science: properties and processes from statistical and computational modelling. United States. doi:10.1039/c7em00053g.
Tratnyek, Paul G., Bylaska, Eric J., and Weber, Eric J. Sun . "In silico environmental chemical science: properties and processes from statistical and computational modelling". United States. doi:10.1039/c7em00053g.
@article{osti_1358499,
title = {In silico environmental chemical science: properties and processes from statistical and computational modelling},
author = {Tratnyek, Paul G. and Bylaska, Eric J. and Weber, Eric J.},
abstractNote = {Quantitative structure–activity relationships (QSARs) have long been used in the environmental sciences. More recently, molecular modeling and chemoinformatic methods have become widespread. These methods have the potential to expand and accelerate advances in environmental chemistry because they complement observational and experimental data with “in silico” results and analysis. The opportunities and challenges that arise at the intersection between statistical and theoretical in silico methods are most apparent in the context of properties that determine the environmental fate and effects of chemical contaminants (degradation rate constants, partition coefficients, toxicities, etc.). The main example of this is the calibration of QSARs using descriptor variable data calculated from molecular modeling, which can make QSARs more useful for predicting property data that are unavailable, but also can make them more powerful tools for diagnosis of fate determining pathways and mechanisms. Emerging opportunities for “in silico environmental chemical science” are to move beyond the calculation of specific chemical properties using statistical models and toward more fully in silico models, prediction of transformation pathways and products, incorporation of environmental factors into model predictions, integration of databases and predictive models into more comprehensive and efficient tools for exposure assessment, and extending the applicability of all the above from chemicals to biologicals and materials.},
doi = {10.1039/c7em00053g},
journal = {Environmental Science: Processes & Impacts},
number = 3,
volume = 19,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2017},
month = {Sun Jan 01 00:00:00 EST 2017}
}
  • We have developed a computational software system to automate the process of identifying solar active regions (ARs) and quantifying their physical properties based on high-resolution synoptic magnetograms constructed from Michelson Doppler Imager (MDI; on board the SOHO spacecraft) images from 1996 to 2008. The system, based on morphological analysis and intensity thresholding, has four functional modules: (1) intensity segmentation to obtain kernel pixels, (2) a morphological opening operation to erase small kernels, which effectively remove ephemeral regions and magnetic fragments in decayed ARs, (3) region growing to extend kernels to full AR size, and (4) the morphological closing operation tomore » merge/group regions with a small spatial gap. We calculate the basic physical parameters of the 1730 ARs identified by the auto system. The mean and maximum magnetic flux of individual ARs are 1.67 x 10{sup 22} Mx and 1.97 x 10{sup 23} Mx, while that per Carrington rotation are 1.83 x 10{sup 23} Mx and 6.96 x 10{sup 23} Mx, respectively. The frequency distributions of ARs with respect to both area size and magnetic flux follow a log-normal function. However, when we decrease the detection thresholds and thus increase the number of detected ARs, the frequency distribution largely follows a power-law function. We also find that the equatorward drifting motion of the AR bands with solar cycle can be described by a linear function superposed with intermittent reverse driftings. The average drifting speed over one solar cycle is 1{sup o}.83{+-}0{sup o}.04 yr{sup -1} or 0.708 {+-} 0.015 m s{sup -1}.« less
  • Transcription and translation use raw materials and energy generated metabolically to create the macromolecular machinery responsible for all cellular functions, including metabolism. A biochemically accurate model of molecular biology and metabolism will facilitate comprehensive and quantitative computations of an organism's molecular constitution as a function of genetic and environmental parameters. Here we formulate a model of metabolism and macromolecular expression. Prototyping it using the simple microorganism Thermotoga maritima, we show our model accurately simulates variations in cellular composition and gene expression. Moreover, through in silico comparative transcriptomics, the model allows the discovery of new regulons and improving the genome andmore » transcription unit annotations. Our method presents a framework for investigating molecular biology and cellular physiology in silico and may allow quantitative interpretation of multi-omics data sets in the context of an integrated biochemical description of an organism.« less
  • Understanding the behavior of interacting electrons in molecules and solids so that one can predict new superconductors, catalysts, light harvesters, energy and battery materials and optimize existing ones is the ``quantum many-body problem’’. This is one of the scientific grand challenges of the 21 st century. A complete solution to the problem has been proven to be exponentially hard, meaning that straightforward numerical approaches fail. New insights and new methods are needed to provide accurate yet feasible approximate solutions. This CMSCN project brought together chemists and physicists to combine insights from the two disciplines to develop innovative new approaches. Outcomesmore » included the Density Matrix Embedding method, a new, computationally inexpensive and extremely accurate approach that may enable first principles treatment of superconducting and magnetic properties of strongly correlated materials, new techniques for existing methods including an Adaptively Truncated Hilbert Space approach that will vastly expand the capabilities of the dynamical mean field method, a self-energy embedding theory and a new memory-function based approach to the calculations of the behavior of driven systems. The methods developed under this project are now being applied to improve our understanding of superconductivity, to calculate novel topological properties of materials and to characterize and improve the properties of nanoscale devices.« less