skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling

Journal Article · · Plant and Soil

A recent acceleration of model-data synthesis activities has leveraged many terrestrial carbon (C) datasets, but utilization of soil respiration (RS) data has not kept pace with other types such as eddy covariance (EC) fluxes and soil C stocks. Here we argue that RS data, including non-continuous measurements from survey sampling campaigns, have unrealized value and should be utilized more extensively and creatively in data synthesis and modeling activities. We identify three major challenges in interpreting RS data, and discuss opportunities to address them. The first challenge is that when RS is compared to ecosystem respiration (RECO) measured from EC towers, it is not uncommon to find substantial mismatch, indicating one or both flux methodologies are unreliable. We argue the most likely cause of mismatch is unreliable EC data, and there is an unrecognized opportunity to utilize RS for EC quality control. The second challenge is that RS integrates belowground heterotrophic (RH) and autotrophic (RA) activity, whereas modelers generally prefer partitioned fluxes, and few models include an explicit RS output. Opportunities exist to use the total RS flux for data assimilation and model benchmarking methods rather than less-certain partitioned fluxes. Pushing for more experiments that not only partition RS but also monitor the age of RA and RH, as well as for the development of belowground RA components in models, would allow for more direct comparison between measured and modeled values. The third challenge is that soil respiration is generally measured at a very different resolution than that needed for comparison to EC or ecosystem- to global-scale models. Measuring soil fluxes with finer spatial resolution and more extensive coverage, and downscaling EC fluxes to match the scale of RS, will improve chamber and tower comparisons. Opportunities also exist to estimate RH at regional scales by implementing decomposition functional types, akin to plant functional types. We conclude by discussing the benefits that wide use of RS data will bring to model development, and database developments that will make RS data more robust, useful, and broadly available to the research community.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1358494
Report Number(s):
PNNL-SA-118375; KP1702010
Journal Information:
Plant and Soil, Vol. 413, Issue 1-2; ISSN 0032-079X
Publisher:
Springer
Country of Publication:
United States
Language:
English