skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of Story Maps to Enhance Public Engagement and Communication at Legacy Management Sites – 17334

Abstract

Story Maps are being used in both public and private sectors to convey information to stakeholders, create enterprise platforms, and assist in decision making. Story Maps are web applications that combine maps, narrative text, images, and multimedia content to provide information. These applications provide a user-friendly platform to share the remarkable history of our sites, the complexity of their contamination and remediation, successes we achieve in our LTS&M activities, and even the challenges we face as we aim to fulfill our mission.

Authors:
 [1];  [1];  [1];  [2]
  1. U.S. Department of Energy, Office of Legacy Management
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
US Department of Energy/Office of Legacy Management
Sponsoring Org.:
USDOE Office of Legacy Management (LM), Office of Site Operations (LM-20)
OSTI Identifier:
1358435
Report Number(s):
WM2017-17334
DOE Contract Number:
LM0000421
Resource Type:
Conference
Resource Relation:
Conference: 2017 Waste Management Conference, Phoenix, AZ, March 5, 2017
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Castillo, Darina, Carpenter, Cliff, Linard, Joshua, and Picel, Mary. Evaluation of Story Maps to Enhance Public Engagement and Communication at Legacy Management Sites – 17334. United States: N. p., 2017. Web.
Castillo, Darina, Carpenter, Cliff, Linard, Joshua, & Picel, Mary. Evaluation of Story Maps to Enhance Public Engagement and Communication at Legacy Management Sites – 17334. United States.
Castillo, Darina, Carpenter, Cliff, Linard, Joshua, and Picel, Mary. Sun . "Evaluation of Story Maps to Enhance Public Engagement and Communication at Legacy Management Sites – 17334". United States. doi:. https://www.osti.gov/servlets/purl/1358435.
@article{osti_1358435,
title = {Evaluation of Story Maps to Enhance Public Engagement and Communication at Legacy Management Sites – 17334},
author = {Castillo, Darina and Carpenter, Cliff and Linard, Joshua and Picel, Mary},
abstractNote = {Story Maps are being used in both public and private sectors to convey information to stakeholders, create enterprise platforms, and assist in decision making. Story Maps are web applications that combine maps, narrative text, images, and multimedia content to provide information. These applications provide a user-friendly platform to share the remarkable history of our sites, the complexity of their contamination and remediation, successes we achieve in our LTS&M activities, and even the challenges we face as we aim to fulfill our mission.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Mar 05 00:00:00 EST 2017},
month = {Sun Mar 05 00:00:00 EST 2017}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The U.S. Department of Energy (DOE) has managed the Long Term Stewardship and Maintenance activities at DOE sites since 1988. DOE's Office of Legacy Management (LM) was established in December 2003, and its specific mission is to manage the DOE's post-closure responsibilities and ensure the future protection of human health and the environment. LM has control and custody for legacy land, structures, and facilities and is responsible for maintaining them at levels suitable for their long-term use. LM uses DOE Policy 454.1: Use of Institutional Controls (ICs) and Associated Guidance. Many major Federal laws, Executive Orders, regulations, and various othermore » drivers influence the establishment and use of ICs at LM sites. LM uses a wide range of ICs as part of efforts to appropriately limit access to, or uses of, land, facilities and other real and personal property assets; protect the environment; maintain the physical safety and security of DOE facilities; and prevent or limit inadvertent human and environmental exposure to residual contaminants and other hazards. ICs generally fall into one of four categories identified by EPA guidance, and DOE is successfully using a 'defense in depth' strategy which uses multiple mechanisms to provide 'layering' for additional durability and protectiveness: - Proprietary controls - such as easements and covenants. - Governmental controls - implemented and enforced by state or local governments. - Enforcement and permit tools with IC components - such as CERCLA agreements or RCRA permits. - Informational devices - such as state registries or public advisories. An additional practice that supports ICs at LM sites entails the use of engineered controls, such as fences, gates, access controls, etc. to ensure public access to applicable areas is limited. An engineered control that is not an IC is the disposal cell itself with its design criteria that protects the contaminated interior, controls the penetration of precipitation, and the provides a physical barrier to environmental and biological intrusion. Other site engineered controls manage surface runoff, restrict access, and provide a monitoring network to track residual contamination and ensure the integrity of the remedy. These engineered controls are part of the remedy and are not considered to be Institutional Controls. As of fiscal year 2006, LM has long-term surveillance and maintenance (LTS and M) responsibilities at 70 sites in 27 states and Puerto Rico with 23 sites planned for transfer to the office during Fiscal Year 2007. ICs are in place at approximately 44 of the current LM sites and they are being tracked to ensure their integrity. A formal inspection process is used at many LM sites to confirm that remedial action components, including associated ICs, remain in place and are effective. Inspections are also critical for determining if additional maintenance or monitoring is necessary. Inspections may be conducted on an as-needed basis and frequencies can vary widely depending on site-specific policies and conditions, but typically occur on an annual basis. At CERCLA sites, the annual inspections are also incorporated into the Five-Year Review process. Inspection procedures are developed for each site and may contain the following components: - Development an inspection checklist based on previous findings or progressive changes in site conditions. - Physical inspection of engineered structures designed to contain or control waste materials. - Review of completed maintenance work and determination of maintenance needs. - Formal inspection of the physical location of IC areas to ensure continued protection of human health and the environment. - Contact of property owners to ensure continued awareness of ICs on their property. - Inspection of the IC areas to ensure that any restrictions imposed by the IC are not being violated, such as drilling of wells in an area that has groundwater restrictions. - Check of county records to verify that deed notices, easements, and other recorded instruments remain in place. - Preparation of report documenting inspection proceedings and schedule for completion of corrective actions, if any. The inspection process is a successful mechanism for ensuring effectiveness of ICs that allow protection of human health and the environment. As the LM site inventory grows to 131 sites by the year 2015, development and management of ICs will continue as an increasingly critical component of LTS and M programs. (authors)« less
  • The complex interplay of politics, economics and culture undermines attempts to define universal best practices for public engagement in the management of nuclear materials. In the international context, communicators must rely on careful adaptation and creative execution to make standard communication techniques succeed in their local communities. Nuclear professionals need an approach to assess and adapt culturally specific public engagement strategies to meet the demands of their particular political, economic and social structures. Using participant interviews and public sources, the Potomac Communications Group reviewed country-specific examples of nuclear-related communication efforts to provide insight into a proposed approach. The review consideredmore » a spectrum of cultural dimensions related to diversity, authority, conformity, proximity and time. Comparisons help to identify cross-cultural influences of various public engagement tactics and to inform a framework for communicators. While not prescriptive in its application, the framework offers a way for communicators to assess the salience of outreach tactics in specific situations. The approach can guide communicators to evaluate and tailor engagement strategies to achieve localized public outreach goals. (authors)« less
  • As former weapons sites close and are transitioned to the U.S. Department of Energy (DOE) Office of Legacy Management (LM), continued public involvement is essential for the successful turnover of long-term surveillance and maintenance (LTS and M) activities. During the environmental remediation process, public participation was a key factor in cleanup completion. The same level of commitment to encourage active public participation is true for the LTS and M activities at the LM sites, such as the Miamisburg Closure Project and the Fernald Closure Project. Community members participate in the transition and the decision-making processes for LTS and M asmore » they did for the selection of response actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup process. [1] A key part of the post-closure activities for the Ohio Sites transitioning to LM from the DOE Office of Environmental Management (EM) is the preservation of site history and stakeholder involvement in the LTS and M activities that will continue during post-closure. In meeting the regulatory requirements of providing the CERCLA Administrative Record Reading Room for public access and to ensure that appropriate records are retrievable and available for all stakeholders, a decision was made to digitize the Miamisburg Closure Project and the Fernald Closure Project Administrative Records. This decision was, in part, based on the information and lessons learned from the digitization of the Rocky Flats Environmental Technology Site (RFETS) CERCLA Administrative Records (AR). The Ohio Sites effort was expanded to include the Living History Project from the Fernald Closure Project. In most cases, the CERCLA AR maintained by EM closure sites and transitioned to LM will provide adequate baselines for identifying and capturing the information required by LM for post-closure stewardship of the sites. The AR established under Section 113(k) [2] of CERCLA serves two primary purposes. First, the record contains those documents that form the basis for selection of a response action and comply with Section 113(j) [3]; judicial review of any issue concerning the adequacy of any response action is limited to the record. Second, Section 113(k) [2] requires that the AR act as a vehicle for public participation in selecting a response action. The AR is the body of documents that 'forms the basis' for the selection of a particular response action at a site and contains historic information that has future study value by scholars, historians, regulators, and other stakeholders. (authors)« less
  • Environmental monitoring objectives of site owners, regulators, consultants, and scientists typically share the common elements of (1) cost management, (2) risk management, and (3) information management (Figure 1). Many site owners focus on minimizing monitoring costs while regulators typically focus on risk and regulatory compliance. Scientists and consultants typically provide information management in the form of spreadsheets with extracted information provided in reports to other users. This common piecemeal approach upon individual focus on elements of the monitoring objectives, rather than the common objective of minimizing cost and risk using site information, results in missed opportunities for cost savings, environmentalmore » protection, and improved understanding of site performance.« less