skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanism involved in trichloroethylene-induced liver cancer: Importance to environmental cleanup. 1998 annual progress report

Technical Report ·
DOI:https://doi.org/10.2172/13582· OSTI ID:13582

'The objective of this project is to develop critical data for changing risk-based clean-up standards for trichloroethylene (TCE). The project is organized around two interrelated tasks: Task 1 addresses the tumorigenic and dosimetry issues for the metabolites of TCE that produce liver cancer in mice, dichloroacetate (DCA) and trichloroacetate (TCA). Early work had suggested that TCA was primarily responsible for TCE-induced liver tumors, but several, more mechanistic observations suggest that DCA may play a prominent role. This task is aimed at determining the basis for the selection hypothesis and seeks to prove that this mode of action is responsible for TCE-induced tumors. This project will supply the basic dose-response data from which low-dose extrapolations would be made. Task 2 seeks specific evidence that TCA and DCA are capable of promoting the growth of spontaneously initiated cells from mouse liver, in vitro. The data provide the clearest evidence that both metabolites act by a mechanism of selection rather than mutation. These data are necessary to select between a linear (i.e. no threshold) and non-linear low-dose extrapolation model. As of May of 1998, this research has identified two plausible modes of action by which TCE produces liver tumors in mice. These modes of action do not require the compounds to be mutagenic. The bulk of the experimental evidence suggests that neither TCE nor the two hepatocarcinogenic metabolites of TCE are mutagenic. The results from the colony formation assay clearly establish that both of these metabolites cause colony growth from initiated cells that occur spontaneously in the liver of B 6 C 3 F 1 mice, although the phenotypes of the colonies differ in the same manner as tumors differ, in vivo. In the case of DCA, a second mechanism may occur at a lower dose involving the release of insulin. This observation is timely as it was recently reported that occupational exposures to trichloroethylene results in 2 to 4-fold elevations in serum insulin concentrations, as well. The increases in insulin have not been shown responsible for the induction of liver tumors. Therefore, this problem is a subject of a proposal to the Office of Biological and Environmental Research Low-Dose Initiative. However, even if this is demonstrated to be the most sensitive mechanism for liver tumor induction, it is unlikely to contribute to induction of cancer at lower doses, since this involves modification of normal endocrine function. As doses are decreased to levels that do not induce increase in serum insulin level, there should be no risk from this metabolite either. Therefore, there is clearly a rational basis for considering a margin of exposure for low dose extrapolation of liver cancer risks for TCE.'

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE Office of Environmental Management (EM), Office of Science and Risk Policy
OSTI ID:
13582
Report Number(s):
EMSP-54684-98; ON: DE00013582
Country of Publication:
United States
Language:
English