## Phonon transport in single-layer transition metal dichalcogenides: A first-principles study

Two-dimensional transition metal dichalcogenides (TMDCs) are finding promising electronic and optical applications due to their unique properties. In this letter, we systematically study the phonon transport and thermal conductivity of eight semiconducting single-layer TMDCs, MX{sub 2} (M = Mo, W, Zr, and Hf, X = S and Se), by using the first-principles-driven phonon Boltzmann transport equation approach. The validity of the single-mode relaxation time approximation to predict the thermal conductivity of TMDCs is assessed by comparing the results with the iterative solution of the phonon Boltzmann transport equation. We find that the phononic thermal conductivities of 2H-type TMDCs are above 50 W/mK at room temperaturemore »