skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Tool for Longitudinal Beam Dynamics in Synchrotrons

Abstract

A number of codes are available to simulate longitudinal dynamics in synchrotrons. Some established ones include TIBETAN, LONG1D, ESME and ORBIT. While they embody a wealth of accumulated wisdom and experience, most of these codes were written decades ago and to some extent they reflect the constraints of their time. As a result, there is an interest for updated tools taking better advantage of modern software and hardware capabilities. At Fermilab, the PIP-II project has provided the impetus for development of such a tool. In this contribution, we discuss design decisions and code architecture. A selection of test cases based on an initial prototype are also presented.

Authors:
 [1];  [1]
  1. Fermilab
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1358085
Report Number(s):
FERMILAB-CONF-17-156-AD; IPAC-2017-THPAB065
1600159
DOE Contract Number:
AC02-07CH11359
Resource Type:
Conference
Resource Relation:
Conference: 8th International Particle Accelerator Conference, Copenhagen, Denmark, 05/14-05/19/2017
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS

Citation Formats

Ostiguy, J.-F., and Lebedev, V. A. A Tool for Longitudinal Beam Dynamics in Synchrotrons. United States: N. p., 2017. Web.
Ostiguy, J.-F., & Lebedev, V. A. A Tool for Longitudinal Beam Dynamics in Synchrotrons. United States.
Ostiguy, J.-F., and Lebedev, V. A. 2017. "A Tool for Longitudinal Beam Dynamics in Synchrotrons". United States. doi:. https://www.osti.gov/servlets/purl/1358085.
@article{osti_1358085,
title = {A Tool for Longitudinal Beam Dynamics in Synchrotrons},
author = {Ostiguy, J.-F. and Lebedev, V. A.},
abstractNote = {A number of codes are available to simulate longitudinal dynamics in synchrotrons. Some established ones include TIBETAN, LONG1D, ESME and ORBIT. While they embody a wealth of accumulated wisdom and experience, most of these codes were written decades ago and to some extent they reflect the constraints of their time. As a result, there is an interest for updated tools taking better advantage of modern software and hardware capabilities. At Fermilab, the PIP-II project has provided the impetus for development of such a tool. In this contribution, we discuss design decisions and code architecture. A selection of test cases based on an initial prototype are also presented.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 5
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • An introductory lesson on the beam dynamics in a synchrotron is presented. We first consider intensity-independent dynamics (single particle dynamics) and then intensity-dependent dynamics are discussed. (AIP)
  • In this paper the authors present a design study on the longitudinal dynamics of a relativistic klystron two-beam accelerator (RK-TBA) scheme which has been proposed as a power source candidate for a 1 TeV next linear collider (NLC). They address the issue of maintaining stable power output at desired level for a 300-m long TBA with 150 extraction cavities and present their simulation results to demonstrate that it can be achieved by inductively detuning the extraction cavities to counter the space charge debunching effect on the drive beam. They then carry out simulation study to show that the beam bunchesmore » desired by the RK-TBA can be efficiently obtained by first chopping an initially uniform beam of low energy into a train of beam bunches with modest longitudinal dimension and then using the {open_quotes}adiabatic capture{close_quotes} scheme to bunch and accelerate these beam bunches into tight bunches at the operating energy of the drive beam. The authors have also examined the {open_quotes}after burner{close_quotes} scheme which is implemented in their RK-TBA design for efficiency enhancement.« less
  • A detailed comparison of theory and experiment concerning the longitudinal beam dynamics of a 2- to 5-MeV drift-tube linac (DTL) was carried out. Beam output energy and phase were measured as a function of DTL rf field amplitude and phase. Comparison between experimental data and theory was found to be in good agreement. 1 refs., 9 figs.
  • An induction linac accelerating a high-current pulse of heavy ions at subrelativistic velocities is predicted to exhibit unstable growth of current fluctuations. An overview is given of the mode character, estimates of growth rates, and their application to an IFE driver. The present and projected effort to understand and ameliorate the instability is described. This includes particle-in-cell simulations, calculation and measurements of impedance, and design of feedback controls.
  • A recirculating induction accelerator requires accelerating waveforms that produce current amplification and provide bunch length control throughout the acceleration process. Current amplification occurs because of both an increase in the beam velocity and a shortening of the length of the beam bunch. The pulsed acceleration and control waveforms seen by the beam change in time as the pulse duration shortens. For one acceleration cycle of the small recirculator, each accelerating gap is driven by a burst of 15 pulses. As the beam gains velocity, the time interval between pulses shortens from approximately 20 to 10 {mu}sec. A zero-dimensional design codemore » REC is used to develop the accelerator wave forms. An envelope/fluid code CIRCE and a 3-D particle code WARP3d are used to confirm the REC design and study the effects of errors. The authors find that acceleration errors can lead to space-charge waves launched at the bunch ends that strongly affect or even destroy the current pulse shape. The relation between the rate of longitudinal compression and the velocity of space charge waves is studied.« less