skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Building America Case Study: Residential Mechanical Precooling, Roseville, California

Abstract

Precooling is an operational strategy with potentially no up-front cost that cools occupied spaces earlier in the day to minimize or avoid afternoon air conditioner operation. In its simplest form, precooling can be implemented by scheduling air conditioner operation to reduce thermostat setpoints between 2 degrees and 6 degrees F below typical comfort settings in advance of the on-peak time period.

Authors:
Publication Date:
Research Org.:
Alliance for Residential Building Innovation (ARBI)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Building Technologies Office (EE-5B) (Building America)
OSTI Identifier:
1358062
Report Number(s):
DOE/GO-102017-4572
7660
Country of Publication:
United States
Language:
English
Subject:
residential; residential buildings; ARBI; Building America; space cooling; pre-cooling; peak demand; demand shifting; off-peak; thermal mass

Citation Formats

A. German and M. Hoeschele. Building America Case Study: Residential Mechanical Precooling, Roseville, California. United States: N. p., 2017. Web.
A. German and M. Hoeschele. Building America Case Study: Residential Mechanical Precooling, Roseville, California. United States.
A. German and M. Hoeschele. 2017. "Building America Case Study: Residential Mechanical Precooling, Roseville, California". United States. doi:. https://www.osti.gov/servlets/purl/1358062.
@article{osti_1358062,
title = {Building America Case Study: Residential Mechanical Precooling, Roseville, California},
author = {A. German and M. Hoeschele},
abstractNote = {Precooling is an operational strategy with potentially no up-front cost that cools occupied spaces earlier in the day to minimize or avoid afternoon air conditioner operation. In its simplest form, precooling can be implemented by scheduling air conditioner operation to reduce thermostat setpoints between 2 degrees and 6 degrees F below typical comfort settings in advance of the on-peak time period.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 5
}
  • Precooling is an operational strategy with potentially no up-front cost that cools occupied spaces earlier in the day to minimize or avoid afternoon air conditioner operation. In its simplest form, precooling can be implemented by scheduling air conditioner operation to reduce thermostat setpoints between 2 degrees and 6 degrees F below typical comfort settings in advance of the on-peak time period.
  • Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources.
  • This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented Emerging Technology Programs. With support from PARR, NYSERDA and other partners, the project documented system performance and installations in Chicago and New York. Combi systems were found to save nearly 200 therms in cold climates at efficiencies betweenmore » about 80% and 94%. Combi systems using third-party air handler units specially designed for condensing combi system operation performed better than the packaged integrated combi systems available for the project. Moreover, combi systems tended to perform poorly when the tankless water heaters operating at high turn-down ratios. Field tests for this study exposed installation deficiencies due to contractor unfamiliarity with the products and the complexity of field engineering and system tweaking to achieve high efficiencies. Widespread contractor education must be a key component to market expansion of combi systems. Installed costs for combi systems need to come down about 5% to 10% to satisfy total resource calculations for utility-administered energy efficiency programs. Greater sales volumes and contractor familiarity can drive costs down. More research is needed to determine how well heating systems such as traditional furnace/water heater, combis, and heat pumps compare in similar as-installed scenarios, but under controlled conditions.« less
  • The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared tomore » the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.« less
  • A new construction pilot community was constructed by builder-partner Wathen-Castanos Hybrid Homes (WCHH) based on a single occupied test house that was designed to achieve greater than 30% energy savings with respect to the House Simulation Protocols (Hendron, Robert; Engebrecht, Cheryn (2010). Building America House Simulation Protocols. Golden, CO: National Renewable Energy Laboratory.). Builders face several key problems when implementing a whole-house systems integrated measures package (SIMP) from a single test house into multiple houses. Although a technical solution already may have been evaluated and validated in an individual test house, the potential exists for constructability failures at the communitymore » scale. This report addresses factors of implementation and scalability at the community scale and proposes methodologies by which community-scale energy evaluations can be performed based on results at the occupied test house level. Research focused on the builder and trade implementation of a SIMP and the actual utility usage in the houses at the community scale of production. Five occupants participated in this community-scale research by providing utility bills and information on occupancy and miscellaneous gas and electric appliance use for their houses. IBACOS used these utility data and background information to analyze the actual energy performance of the houses. Verification with measured data is an important component in predictive energy modeling. The actual utility bill readings were compared to projected energy consumption using BEopt with actual weather and thermostat set points for normalization.« less