skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterizing U.S. Heat Demand Market for Potential Application of Geothermal Direct Use

Abstract

In this paper, we assess the U.S. demand for low-temperature thermal energy at the county resolution for four major end-use sectors: residential buildings, commercial buildings, manufacturing facilities, and agricultural facilities. Existing, publicly available data on the U.S. thermal demand market are characterized by coarse spatial resolution, with assessments typically at the state-level or larger. For many uses, these data are sufficient; however, our research was motivated by an interest in assessing the potential demand for direct use (DU) of low-temperature (30 degrees to 150 degrees C) geothermal heat. The availability and quality of geothermal resources for DU applications are highly spatially heterogeneous; therefore, to assess the potential market for these resources, it is necessary to understand the spatial variation in demand for low-temperature resources at a local resolution. This paper presents the datasets and methods we used to develop county-level estimates of the thermal demand for the residential, commercial, manufacturing, and agricultural sectors. Although this analysis was motivated by an interest in geothermal energy deployment, the results are likely to have broader applications throughout the energy industry. The county-resolution thermal demand data developed in this study for four major U.S. sectors may have far-reaching implications for building technologies, industrial processes,more » and various distributed renewable energy thermal resources (e.g. biomass, solar).« less

Authors:
; ; ;
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Office (EE-4G)
OSTI Identifier:
1357947
Report Number(s):
NREL/CP-6A20-68522
DOE Contract Number:
AC36-08GO28308
Resource Type:
Conference
Resource Relation:
Conference: Presented at the Geothermal Resources Council Annual Meeting (GRC 2016), 23-26 October 2016, Sacramento, California
Country of Publication:
United States
Language:
English
Subject:
15 GEOTHERMAL ENERGY; 29 ENERGY PLANNING, POLICY, AND ECONOMY; direct use; low-temperature; geothermal; heat demand; heat market; thermal demand; end-use; residential; commercial; manufacturing; agricultural; Geothermal Vision Study; GeoVision

Citation Formats

McCabe, Kevin, Gleason, Michael, Reber, Tim, and Young, Katherine R. Characterizing U.S. Heat Demand Market for Potential Application of Geothermal Direct Use. United States: N. p., 2017. Web.
McCabe, Kevin, Gleason, Michael, Reber, Tim, & Young, Katherine R. Characterizing U.S. Heat Demand Market for Potential Application of Geothermal Direct Use. United States.
McCabe, Kevin, Gleason, Michael, Reber, Tim, and Young, Katherine R. Mon . "Characterizing U.S. Heat Demand Market for Potential Application of Geothermal Direct Use". United States. doi:.
@article{osti_1357947,
title = {Characterizing U.S. Heat Demand Market for Potential Application of Geothermal Direct Use},
author = {McCabe, Kevin and Gleason, Michael and Reber, Tim and Young, Katherine R.},
abstractNote = {In this paper, we assess the U.S. demand for low-temperature thermal energy at the county resolution for four major end-use sectors: residential buildings, commercial buildings, manufacturing facilities, and agricultural facilities. Existing, publicly available data on the U.S. thermal demand market are characterized by coarse spatial resolution, with assessments typically at the state-level or larger. For many uses, these data are sufficient; however, our research was motivated by an interest in assessing the potential demand for direct use (DU) of low-temperature (30 degrees to 150 degrees C) geothermal heat. The availability and quality of geothermal resources for DU applications are highly spatially heterogeneous; therefore, to assess the potential market for these resources, it is necessary to understand the spatial variation in demand for low-temperature resources at a local resolution. This paper presents the datasets and methods we used to develop county-level estimates of the thermal demand for the residential, commercial, manufacturing, and agricultural sectors. Although this analysis was motivated by an interest in geothermal energy deployment, the results are likely to have broader applications throughout the energy industry. The county-resolution thermal demand data developed in this study for four major U.S. sectors may have far-reaching implications for building technologies, industrial processes, and various distributed renewable energy thermal resources (e.g. biomass, solar).},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2017},
month = {Mon May 01 00:00:00 EDT 2017}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • In this paper, we assess the U.S. demand for low-temperature thermal energy at the county resolution for four major end-use sectors: residential buildings, commercial buildings, manufacturing facilities, and agricultural facilities. Existing, publicly available data on the U.S. thermal demand market are characterized by coarse spatial resolution, with assessments typically at the state-level or larger. For many uses, these data are sufficient; however, our research was motivated by an interest in assessing the potential demand for direct use (DU) of low-temperature (30 degrees to 150 degrees C) geothermal heat. The availability and quality of geothermal resources for DU applications are highlymore » spatially heterogeneous; therefore, to assess the potential market for these resources, it is necessary to understand the spatial variation in demand for low-temperature resources at a local resolution. This paper presents the datasets and methods we used to develop county-level estimates of the thermal demand for the residential, commercial, manufacturing, and agricultural sectors. Although this analysis was motivated by an interest in geothermal energy deployment, the results are likely to have broader applications throughout the energy industry. The county-resolution thermal demand data developed in this study for four major U.S. sectors may have far-reaching implications for building technologies, industrial processes, and various distributed renewable energy thermal resources (e.g. biomass, solar).« less
  • This dataset includes heat demand for potential application of direct use geothermal broken down into 4 sectors: agricultural, commercial, manufacturing and residential. The data for each sector are organized by county, were disaggregated specifically to assess the market demand for geothermal direct use, and were derived using methodologies customized for each sector based on the availability of data and other sector-specific factors. This dataset also includes a paper containing a full explanation of the methodologies used.
  • A preliminary study was made of the potential for geothermal direct heat use in Arizona, California, Hawaii, and Nevada (Federal Region IX). The analysis for each state was performed by a different team, located in that state. For each state, the study team was asked to: (1) define the resource, based on the latest available data; (2) assess the potential market growth for geothermal energy; and (3) estimate the market penetration, projected to 2020. Each of the four states of interest in this study is unique in its own way. Rather than impose the same assumptions as to growth rates,more » capture rates, etc. on all of the study teams, each team was asked to use the most appropriate set of assumptions for its state. The results, therefore, should reflect the currently accepted views within each state. The four state reports comprise the main portion of this document. A brief regional overview section was prepared by the Jet Propulsion Laboratory, following completion of the state reports.« less
  • This study estimates the future regional and national market penetration path of hydrothermal geothermal direct heat applications in the United States. A Technology Substitution Model (MARPEN) is developed and used to estimate the energy market shares captured by low-temperature (50 to 150/sup 0/C) hydrothermal geothermal energy systems over the period 1985 to 2020. The sensitivity of hydrothermal direct heat market shares to various government hydrothermal commercialization policies is examined. Several substantive recommendations to help accelerate commercialization of geothermal direct heat utilization in the United States are indicated and possible additional analyses are discussed.
  • NETL has reviewed available information and evaluated the deep geothermal and natural gas resources located beneath the Camp Dawson National Guard Training Center in West Virginia. This facility is located in the northeastern portion of the state in Preston County, near the town of Kingwood. This study reviews options for the onsite drilling of wells for the production of geothermal heat or natural gas, as well as the utilization of these resources for on-site power and heating needs. Resources of potential interest are at subsurface depths between 7,000 feet and 15,000 feet.