skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Black carbon emissions in Russia: A critical review

Abstract

Here, this study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions.more » We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.« less

Authors:
 [1]; ORCiD logo [1];  [2];  [3];  [1]; ORCiD logo [1];  [4]; ORCiD logo [5];  [5]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. U.S. Environmental Protection Agency, Washington, D.C. (United States)
  3. Univ. of Delaware, Newark, DE (United States)
  4. U.S. Forest Service, Missoula, MT (United States)
  5. Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1357802
Alternate Identifier(s):
OSTI ID: 1397806
Report Number(s):
PNNL-SA-120649
Journal ID: ISSN 1352-2310; PII: S1352231017303278
Grant/Contract Number:
DW-089924383; AC05-76RL01830; AC05-76RL01831
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Atmospheric Environment (1994)
Additional Journal Information:
Journal Name: Atmospheric Environment (1994); Journal Volume: 163; Journal ID: ISSN 1352-2310
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; black carbon; organic carbon; Russia; emission inventory; radiative forcing

Citation Formats

Evans, Meredydd, Kholod, Nazar, Kuklinski, Teresa, Denysenko, Artur, Smith, Steven J., Staniszewski, Aaron, Hao, Wei Min, Liu, Liang, and Bond, Tami C. Black carbon emissions in Russia: A critical review. United States: N. p., 2017. Web. doi:10.1016/j.atmosenv.2017.05.026.
Evans, Meredydd, Kholod, Nazar, Kuklinski, Teresa, Denysenko, Artur, Smith, Steven J., Staniszewski, Aaron, Hao, Wei Min, Liu, Liang, & Bond, Tami C. Black carbon emissions in Russia: A critical review. United States. doi:10.1016/j.atmosenv.2017.05.026.
Evans, Meredydd, Kholod, Nazar, Kuklinski, Teresa, Denysenko, Artur, Smith, Steven J., Staniszewski, Aaron, Hao, Wei Min, Liu, Liang, and Bond, Tami C. Thu . "Black carbon emissions in Russia: A critical review". United States. doi:10.1016/j.atmosenv.2017.05.026. https://www.osti.gov/servlets/purl/1357802.
@article{osti_1357802,
title = {Black carbon emissions in Russia: A critical review},
author = {Evans, Meredydd and Kholod, Nazar and Kuklinski, Teresa and Denysenko, Artur and Smith, Steven J. and Staniszewski, Aaron and Hao, Wei Min and Liu, Liang and Bond, Tami C.},
abstractNote = {Here, this study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.},
doi = {10.1016/j.atmosenv.2017.05.026},
journal = {Atmospheric Environment (1994)},
number = ,
volume = 163,
place = {United States},
year = {Thu May 18 00:00:00 EDT 2017},
month = {Thu May 18 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • Russia has a particularly important role regarding black carbon (BC) emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. This study presents a comprehensive review of BC estimates from a range of studies. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russian associated petroleummore » gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 689 Gg in 2014, with an uncertainty range between (407-1,416), while OC emissions are 9,228 Gg (with uncertainty between 5,595 and 14,728). Wildfires dominated and contributed about 83% of the total BC emissions, however the effect on radiative forcing is mitigated by OC emissions. We also present an adjusted estimate of Arctic forcing from Russian OC and BC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.« less
  • This article assesses options and challenges of reducing black carbon emissions from diesel vehicles in Russia. Black carbon is a product of incomplete diesel combustion and is a component of fine particulate matter. Particulate matter emissions have adverse health impacts, causing cardiopulmonary disease and lung cancer; black carbon is also a large climate forcer. Black carbon emissions from Russian diesel sources affect not only the Russian territory but also contribute to overall pollution. Here, this paper analyzes current ecological standards for vehicles and fuel, evaluates policies for emission reductions from existing diesel vehicle fleet, and assesses Russia’s attempts to encouragemore » the use of natural gas as a vehicle fuel. Based on best practices of black carbon emission reductions, this paper provides a number of policy recommendations for Russia.« less
  • This article assesses options and challenges of reducing black carbon emissions from diesel vehicles in Russia. Black carbon is a product of incomplete diesel combustion and is a component of fine particulate matter. Particulate matter emissions have adverse health impacts, causing cardiopulmonary disease and lung cancer; black carbon is also a large climate forcer. Black carbon emissions from Russian diesel sources affect not only the Russian territory but also contribute to overall pollution. Here, this paper analyzes current ecological standards for vehicles and fuel, evaluates policies for emission reductions from existing diesel vehicle fleet, and assesses Russia’s attempts to encouragemore » the use of natural gas as a vehicle fuel. Based on best practices of black carbon emission reductions, this paper provides a number of policy recommendations for Russia.« less
  • Black carbon (BC), from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m{sup -2}, or about 7-10% of total organic C in 1900. With cessation of biomass burning, BC stocksmore » decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182-541 years), much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene poly carboxylic acids (BPCA) as molecular markers. The proportions of less-condensed (and thus more easily degradable) BC structures decreased, whereas the highly condensed (and more recalcitrant) BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.« less