skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hybrid silicon–carbon nanostructures for broadband optical absorption

Abstract

Proper design of nanomaterials for broadband light absorption is a key factor for improving the conversion efficiency of solar cells. Here we present a hybrid design of silicon–carbon nanostructures with silicon clusters coated by carbon cages, i.e., Si m@C 2n for potential solar cell application. The optical properties of these hybrid nanostructures were calculated based on time dependent density function theory (TDDFT). The results show that the optical spectra of Si m@C 2n are very different from those of pure Si m and C 2n clusters. While the absorption spectra of pure carbon cages and Si m clusters exhibit peaks in the UV region, those of the Si m@C 2n nanostructures exhibit a significant red shift. Superposition of the optical spectra of various Si m@C 2n nanostructures forms a broad-band absorption, which extends to the visible light and infrared regions. As a result, the broadband adsorption of the assembled Si m@C 2n nanoclusters may provide a new approach for the design of high efficiency solar cell nanomaterials.

Authors:
 [1];  [2];  [3];  [3]
  1. Qingdao Univ., Qingdao (People's Republic of China)
  2. Qingdao Univ., Qingdao (People's Republic of China); Jilin Univ., Changchun (People's Republic of China)
  3. Ames Lab. and Iowa State Univ., Ames, IA (United States)
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1357790
Report Number(s):
IS-J-9241
Journal ID: ISSN 2046-2069; RSCACL
Grant/Contract Number:
AC02-07CH11358
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
RSC Advances
Additional Journal Information:
Journal Volume: 7; Journal Issue: 13; Journal ID: ISSN 2046-2069
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Yang, Wen -Hua, Lu, Wen -Cai, Ho, K. M., and Wang, C. Z. Hybrid silicon–carbon nanostructures for broadband optical absorption. United States: N. p., 2017. Web. doi:10.1039/C6RA27764K.
Yang, Wen -Hua, Lu, Wen -Cai, Ho, K. M., & Wang, C. Z. Hybrid silicon–carbon nanostructures for broadband optical absorption. United States. doi:10.1039/C6RA27764K.
Yang, Wen -Hua, Lu, Wen -Cai, Ho, K. M., and Wang, C. Z. Wed . "Hybrid silicon–carbon nanostructures for broadband optical absorption". United States. doi:10.1039/C6RA27764K. https://www.osti.gov/servlets/purl/1357790.
@article{osti_1357790,
title = {Hybrid silicon–carbon nanostructures for broadband optical absorption},
author = {Yang, Wen -Hua and Lu, Wen -Cai and Ho, K. M. and Wang, C. Z.},
abstractNote = {Proper design of nanomaterials for broadband light absorption is a key factor for improving the conversion efficiency of solar cells. Here we present a hybrid design of silicon–carbon nanostructures with silicon clusters coated by carbon cages, i.e., Sim@C2n for potential solar cell application. The optical properties of these hybrid nanostructures were calculated based on time dependent density function theory (TDDFT). The results show that the optical spectra of Sim@C2n are very different from those of pure Sim and C2n clusters. While the absorption spectra of pure carbon cages and Sim clusters exhibit peaks in the UV region, those of the Sim@C2n nanostructures exhibit a significant red shift. Superposition of the optical spectra of various Sim@C2n nanostructures forms a broad-band absorption, which extends to the visible light and infrared regions. As a result, the broadband adsorption of the assembled Sim@C2n nanoclusters may provide a new approach for the design of high efficiency solar cell nanomaterials.},
doi = {10.1039/C6RA27764K},
journal = {RSC Advances},
number = 13,
volume = 7,
place = {United States},
year = {Wed Jan 25 00:00:00 EST 2017},
month = {Wed Jan 25 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • Density-graded surface nanostructures are implemented on ultrathin silicon solar microcells by silver-nanoparticle-catalyzed wet chemical etching to enable near-zero surface reflection over a broad wavelength range of incident solar spectrum as well as non-zeroth order diffraction and light trapping for longer wavelength photons, thereby achieving augmented photon absorption for ultrathin silicon microcells in a simple, cost-effective manner. The increase of absorbed photon flux through the “black silicon (b-Si)” surface translates directly into the corresponding enhancement of photovoltaic performance, where 5.7-μm b-Si microcells with the rational design of device configuration exhibit improved energy conversion efficiency by 148% and 50% with and withoutmore » a diffuse backside reflector, respectively, compared to devices from the bare silicon without b-Si implementation. Systematic studies on nanostructured morphology, optical and electrical properties of b-Si microcells, together with semi-empirical numerical modeling of photon absorption, provide key aspects of underlying materials science and physics.« less
  • Both photonic and plasmonic nanostructures are key optical components of photoactive devices for light harvesting, enabling solar cells with significant thickness reduction, and light detectors capable of detecting photons with sub-band gap energies. In this work, we study the plasmon enhanced broadband light absorption and electrical properties of silicon nanobowl (SiNB) arrays. The SiNB-metal photonic-plasmonic nanostructure-based devices exhibited superior light-harvesting ability across a wide range of wavelengths up to the infrared regime well below the band edge of Si due to effective optical coupling between the SiNB array and incident sunlight, as well as electric field intensity enhancement around metalmore » nanoparticles due to localized surface plasmon resonance. The photonic-plasmonic nanostructure is expected to result in infrared-light detectors and high-efficiency solar cells by extending light-harvesting to infrared frequencies.« less
  • Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, themore » Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process.« less