skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment

Abstract

Here, we present radiation-hydrodynamic simulations of self-generated magnetic field in a hohlraum, which show an increased temperature in large regions of the underdense fill. Non-parallel gradients in electron density and temperature in a laser-heated plasma give rise to a self-generated field by the “Biermann battery” mechanism. Here, HYDRA simulations of three hohlraum designs on the National Ignition Facility are reported, which use a partial magnetohydrodynamic (MHD) description that includes the self-generated source term, resistive dissipation, and advection of the field due to both the plasma flow and the Nernst term. Anisotropic electron heat conduction parallel and perpendicular to the field is included, but not the Righi-Leduc heat flux. The field strength is too small to compete significantly with plasma pressure, but affects plasma conditions by reducing electron heat conduction perpendicular to the field. Significant reductions in heat flux can occur, especially for high Z plasma, at modest values of the Hall parameter, Ω eτ ei≲1, where Ω e = eB/m ec and τ ei is the electron-ion collision time. The inclusion of MHD in the simulations leads to 1 keV hotter electron temperatures in the laser entrance hole and high- Z wall blowoff, which reduces inverse-bremsstrahlung absorption of the lasermore » beam. This improves propagation of the inner beams pointed at the hohlraum equator, resulting in a symmetry shift of the resulting capsule implosion towards a more prolate shape. The time of peak x-ray production in the capsule shifts later by only 70 ps (within experimental uncertainty), but a decomposition of the hotspot shape into Legendre moments indicates a shift of P 2/P 0 by ~20%. As a result, this indicates that MHD cannot explain why simulated x-ray drive exceeds measured levels, but may be partially responsible for failures to correctly model the symmetry.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1357408
Alternate Identifier(s):
OSTI ID: 1361878
Report Number(s):
LLNL-JRNL-722081
Journal ID: ISSN 1070-664X
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 24; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION

Citation Formats

Farmer, W. A., Koning, J. M., Strozzi, D. J., Hinkel, D. E., Berzak Hopkins, L. F., Jones, O. S., and Rosen, M. D. Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment. United States: N. p., 2017. Web. doi:10.1063/1.4983140.
Farmer, W. A., Koning, J. M., Strozzi, D. J., Hinkel, D. E., Berzak Hopkins, L. F., Jones, O. S., & Rosen, M. D. Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment. United States. doi:10.1063/1.4983140.
Farmer, W. A., Koning, J. M., Strozzi, D. J., Hinkel, D. E., Berzak Hopkins, L. F., Jones, O. S., and Rosen, M. D. Tue . "Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment". United States. doi:10.1063/1.4983140. https://www.osti.gov/servlets/purl/1357408.
@article{osti_1357408,
title = {Simulation of self-generated magnetic fields in an inertial fusion hohlraum environment},
author = {Farmer, W. A. and Koning, J. M. and Strozzi, D. J. and Hinkel, D. E. and Berzak Hopkins, L. F. and Jones, O. S. and Rosen, M. D.},
abstractNote = {Here, we present radiation-hydrodynamic simulations of self-generated magnetic field in a hohlraum, which show an increased temperature in large regions of the underdense fill. Non-parallel gradients in electron density and temperature in a laser-heated plasma give rise to a self-generated field by the “Biermann battery” mechanism. Here, HYDRA simulations of three hohlraum designs on the National Ignition Facility are reported, which use a partial magnetohydrodynamic (MHD) description that includes the self-generated source term, resistive dissipation, and advection of the field due to both the plasma flow and the Nernst term. Anisotropic electron heat conduction parallel and perpendicular to the field is included, but not the Righi-Leduc heat flux. The field strength is too small to compete significantly with plasma pressure, but affects plasma conditions by reducing electron heat conduction perpendicular to the field. Significant reductions in heat flux can occur, especially for high Z plasma, at modest values of the Hall parameter, Ωeτei≲1, where Ωe = eB/mec and τei is the electron-ion collision time. The inclusion of MHD in the simulations leads to 1 keV hotter electron temperatures in the laser entrance hole and high-Z wall blowoff, which reduces inverse-bremsstrahlung absorption of the laser beam. This improves propagation of the inner beams pointed at the hohlraum equator, resulting in a symmetry shift of the resulting capsule implosion towards a more prolate shape. The time of peak x-ray production in the capsule shifts later by only 70 ps (within experimental uncertainty), but a decomposition of the hotspot shape into Legendre moments indicates a shift of P2/P0 by ~20%. As a result, this indicates that MHD cannot explain why simulated x-ray drive exceeds measured levels, but may be partially responsible for failures to correctly model the symmetry.},
doi = {10.1063/1.4983140},
journal = {Physics of Plasmas},
issn = {1070-664X},
number = 5,
volume = 24,
place = {United States},
year = {2017},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Vlasov–Fokker–Planck code for high energy density physics
journal, July 2011

  • Tzoufras, M.; Bell, A. R.; Norreys, P. A.
  • Journal of Computational Physics, Vol. 230, Issue 17
  • DOI: 10.1016/j.jcp.2011.04.034

A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D 3 He and DT implosions at the NIF
journal, October 2012

  • Rinderknecht, H. G.; Johnson, M. Gatu; Zylstra, A. B.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4731000

Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility
journal, April 2016

  • Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4948276

Imposed magnetic field and hot electron propagation in inertial fusion hohlraums
journal, December 2015

  • Strozzi, David J.; Perkins, L. J.; Marinak, M. M.
  • Journal of Plasma Physics, Vol. 81, Issue 6
  • DOI: 10.1017/S0022377815001348

Review on spontaneous magnetic fields in laser-produced plasmas: Phenomena and measurements
journal, December 1991


The importance of electrothermal terms in Ohm's law for magnetized spherical implosions
journal, November 2015

  • Davies, J. R.; Betti, R.; Chang, P. -Y.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4935286

High-density carbon ablator experiments on the National Ignition Facility
journal, May 2014

  • MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876611

A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments
journal, May 2012

  • Jones, O. S.; Cerjan, C. J.; Marinak, M. M.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.4718595

Magnetic-field generation in laser fusion and hot-electron transport
journal, August 1986

  • Haines, M. G.
  • Canadian Journal of Physics, Vol. 64, Issue 8
  • DOI: 10.1139/p86-160

A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes
journal, January 2000

  • Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.
  • Physics of Plasmas, Vol. 7, Issue 10
  • DOI: 10.1063/1.1289512

Modeling HEDLA magnetic field generation experiments on laser facilities
journal, March 2013


Advances in NLTE modeling for integrated simulations
journal, January 2010


Longitudinal Ion Oscillations in a Hot Plasma
journal, January 1961


Nonlinear Inverse Bremsstrahlung and Heated-Electron Distributions
journal, March 1980


Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility
journal, November 2016


Plasma transport coefficients in a magnetic field by direct numerical solution of the Fokker–Planck equation
journal, January 1986

  • Epperlein, E. M.; Haines, M. G.
  • Physics of Fluids, Vol. 29, Issue 4
  • DOI: 10.1063/1.865901

Symmetry control in subscale near-vacuum hohlraums
journal, May 2016

  • Turnbull, D.; Berzak Hopkins, L. F.; Le Pape, S.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4950825

A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited)
journal, November 2014

  • Rinderknecht, H. G.; Sio, H.; Frenje, J. A.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4886775

A review of Vlasov–Fokker–Planck numerical modeling of inertial confinement fusion plasma
journal, February 2012

  • Thomas, A. G. R.; Tzoufras, M.; Robinson, A. P. L.
  • Journal of Computational Physics, Vol. 231, Issue 3
  • DOI: 10.1016/j.jcp.2011.09.028

A practical nonlocal model for heat transport in magnetized laser plasmas
journal, March 2006

  • Nicolaï, Ph. D.; Feugeas, J. -L. A.; Schurtz, G. P.
  • Physics of Plasmas, Vol. 13, Issue 3
  • DOI: 10.1063/1.2179392

The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
journal, September 2011


Spontaneous Magnetic Fields in Laser-Produced Plasmas
journal, April 1971


The Biermann Catastrophe in Numerical Magnetohydrodynamics
journal, March 2015


Kinetic modeling of Nernst effect in magnetized hohlraums
journal, April 2016


Magnetic Field and Nonlocal Transport in Laser-Created Plasmas
journal, November 1985


A multi-dimensional Vlasov-Fokker-Planck code for arbitrarily anisotropic high-energy-density plasmas
journal, May 2013

  • Tzoufras, M.; Tableman, A.; Tsung, F. S.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4801750

High-Gain Magnetized Inertial Fusion
journal, January 2012


Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)
journal, May 2015

  • Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921151

Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields
journal, July 2013

  • Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816813

Magnetic Reconnection in Plasma under Inertial Confinement Fusion Conditions Driven by Heat Flux Effects in Ohm’s Law
journal, March 2014


Topology of Megagauss Magnetic Fields and of Heat-Carrying Electrons Produced in a High-Power Laser-Solid Interaction
journal, December 2014


Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740