skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of EMF Emissions from Cables and Junction Boxes on Marine Species

Abstract

Studies have shown that diverse aquatic species are electrosensitive. Many fishes, and marine mammals, can either detect, navigate by, or are affected by electromagnetic fields (EMF) with various sensitivities, and their behavior may be impacted by unnatural EMF emissions in the water column. Sharks, rays and skates are known to have the highest sensitivity to electric fields. Electric field emissions in the range 0.5–100 micro volt/m appear to attract them, and emissions over 100 micro volt/m to repulse them. A marine hydrokinetic MHK device will have multiple components and associated multiple submarine cables on the seafloor and running through the water column and would potentially increase the level of EMF emissions to which the marine species at the site may be exposed to. There are therefore concerns amongst stakeholders that EMF emissions associated with MHK devices and their components may act as barriers to species migration, cause disorientation, change community compositions and ecosystems, and that they may attract sharks, leading to a local increase in the risk of shark attacks. However, field data to validate and model potential relationships between observed responses and the EMF emissions in situ are sparse. A program of experimental field surveys were conducted off themore » coast of South Florida, USA to characterize the electromagnetic field (EMF) emissions in the water column from a submarine cable, and to monitor for responses of local aquatic species. The field surveys were conducted at the South Florida Ocean Measurement Facility (SFOMF) off Fort Lauderdale, which is a cabled offshore in-water navy range. It consists of multiple active submarine power cables and a number of junction boxes, with the capability to transmit AC/DC power at a range of strength and frequencies. The site includes significant marine life activities and community structure, including highly mobile species, such as sharks, stingrays, mammals and turtles. SFOMF therefore typifies a setting representative of an offshore location where a MHK device may be sited. Background electromagnetic field (EMF) levels and EMF emissions due to submarine cables were measured using a custom E-field sensor and a commercial magnetometer deployed from an autonomous underwater vehicle (AUV) at various fixed altitudes above the seafloor. EMF signatures detected from power cables and junction boxes are contrasted against ambient background levels and other EMF sources. The potential responses of local marine species were observed at selected representative locations using divers on SCUBA, complemented with fixed cameras on the sea bottom and by a set of video cameras mounted on the AUV. The objectives of the study were: 1) to characterize the EMF emission levels associated with submarine cables 2) to monitor potential responses of aquatic animals to the emissions and 3) to develop an associated database of field observations. As control, observations of EMF levels and in situ marine species were conducted with power in the cable turned off. Good quality measurements of EMF emissions were obtained using the mobile AUV platform and the data from the surveys were used to develop contour maps of the EMF levels in the water column above the live cable as well as to provide information about how the field decays away from the cable. The measurements show good agreement with theoretical models of the how EMF levels decay away from the cable in deep and shallow water environment. Electric fields in excess of 200µV/m were measured in the vicinity of the cable during the power on state. Quarterly surveys by SCUBA divers were conducted, using point and transect count methods, over a period of one year at three locations, one at a shallow site where the water depth is approximately 5m, and the other at the Barracuda Reef where the water depth is approximately 10m. The sampling results were analyzed to determine if the presence of an SFOMF generated EMF alters: (1) abundance, species richness, and assemblage structure of coral reef fishes, (2) the behavior of fishes including elasmobranchs, and (3) the distribution of marine turtles and mammals. Diver observations were also used in attempt to discern if there were any noticeable organismal responses during the transitional period between ambient OFF to energized AC or DC power states, and video footage was intended to augment the in-situ visual survey data and aid in interpretation of the results. Comparisons are provided between observation datasets between the three sites and between the point and transect count methods. Presence of several individual elasmobranch species, including sharks and stingrays, were recorded during the surveys. No apparent effect on richness could be discerned between the power on and off states. No apparent sudden animal movements were observed during transitions between power states.« less

Authors:
ORCiD logo [1];  [2];  [2];  [2];  [1];  [1];  [1];  [1];  [1];  [3]
  1. Florida Atlantic Univ., Boca Raton, FL (United States)
  2. Nova Southeastern Univ., Fort Lauderdale, FL (United States)
  3. Naval Surface Warfare Center (NSWC), Carderock Division (United States)
Publication Date:
Research Org.:
Florida Atlantic Univ., Boca Raton, FL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1357262
Report Number(s):
DOEFAU-0006386
DOE Contract Number:
EE0006386
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 16 TIDAL AND WAVE POWER; 17 WIND ENERGY; 30 DIRECT ENERGY CONVERSION; EMF Emissions; Subsea cables; AUV-based measurements; Scuba diver based observations

Citation Formats

Dhanak, Manhar, Spieler, Richard, Kilfoyle, Kirk, Jermain, Robert F., Frankenfield, John, Ravenna, Shirley, Dibiasio, Christopher, Coulson, Robert, Henderson, Ed, and Venezia, William. Effects of EMF Emissions from Cables and Junction Boxes on Marine Species. United States: N. p., 2016. Web. doi:10.2172/1357262.
Dhanak, Manhar, Spieler, Richard, Kilfoyle, Kirk, Jermain, Robert F., Frankenfield, John, Ravenna, Shirley, Dibiasio, Christopher, Coulson, Robert, Henderson, Ed, & Venezia, William. Effects of EMF Emissions from Cables and Junction Boxes on Marine Species. United States. doi:10.2172/1357262.
Dhanak, Manhar, Spieler, Richard, Kilfoyle, Kirk, Jermain, Robert F., Frankenfield, John, Ravenna, Shirley, Dibiasio, Christopher, Coulson, Robert, Henderson, Ed, and Venezia, William. 2016. "Effects of EMF Emissions from Cables and Junction Boxes on Marine Species". United States. doi:10.2172/1357262. https://www.osti.gov/servlets/purl/1357262.
@article{osti_1357262,
title = {Effects of EMF Emissions from Cables and Junction Boxes on Marine Species},
author = {Dhanak, Manhar and Spieler, Richard and Kilfoyle, Kirk and Jermain, Robert F. and Frankenfield, John and Ravenna, Shirley and Dibiasio, Christopher and Coulson, Robert and Henderson, Ed and Venezia, William},
abstractNote = {Studies have shown that diverse aquatic species are electrosensitive. Many fishes, and marine mammals, can either detect, navigate by, or are affected by electromagnetic fields (EMF) with various sensitivities, and their behavior may be impacted by unnatural EMF emissions in the water column. Sharks, rays and skates are known to have the highest sensitivity to electric fields. Electric field emissions in the range 0.5–100 micro volt/m appear to attract them, and emissions over 100 micro volt/m to repulse them. A marine hydrokinetic MHK device will have multiple components and associated multiple submarine cables on the seafloor and running through the water column and would potentially increase the level of EMF emissions to which the marine species at the site may be exposed to. There are therefore concerns amongst stakeholders that EMF emissions associated with MHK devices and their components may act as barriers to species migration, cause disorientation, change community compositions and ecosystems, and that they may attract sharks, leading to a local increase in the risk of shark attacks. However, field data to validate and model potential relationships between observed responses and the EMF emissions in situ are sparse. A program of experimental field surveys were conducted off the coast of South Florida, USA to characterize the electromagnetic field (EMF) emissions in the water column from a submarine cable, and to monitor for responses of local aquatic species. The field surveys were conducted at the South Florida Ocean Measurement Facility (SFOMF) off Fort Lauderdale, which is a cabled offshore in-water navy range. It consists of multiple active submarine power cables and a number of junction boxes, with the capability to transmit AC/DC power at a range of strength and frequencies. The site includes significant marine life activities and community structure, including highly mobile species, such as sharks, stingrays, mammals and turtles. SFOMF therefore typifies a setting representative of an offshore location where a MHK device may be sited. Background electromagnetic field (EMF) levels and EMF emissions due to submarine cables were measured using a custom E-field sensor and a commercial magnetometer deployed from an autonomous underwater vehicle (AUV) at various fixed altitudes above the seafloor. EMF signatures detected from power cables and junction boxes are contrasted against ambient background levels and other EMF sources. The potential responses of local marine species were observed at selected representative locations using divers on SCUBA, complemented with fixed cameras on the sea bottom and by a set of video cameras mounted on the AUV. The objectives of the study were: 1) to characterize the EMF emission levels associated with submarine cables 2) to monitor potential responses of aquatic animals to the emissions and 3) to develop an associated database of field observations. As control, observations of EMF levels and in situ marine species were conducted with power in the cable turned off. Good quality measurements of EMF emissions were obtained using the mobile AUV platform and the data from the surveys were used to develop contour maps of the EMF levels in the water column above the live cable as well as to provide information about how the field decays away from the cable. The measurements show good agreement with theoretical models of the how EMF levels decay away from the cable in deep and shallow water environment. Electric fields in excess of 200µV/m were measured in the vicinity of the cable during the power on state. Quarterly surveys by SCUBA divers were conducted, using point and transect count methods, over a period of one year at three locations, one at a shallow site where the water depth is approximately 5m, and the other at the Barracuda Reef where the water depth is approximately 10m. The sampling results were analyzed to determine if the presence of an SFOMF generated EMF alters: (1) abundance, species richness, and assemblage structure of coral reef fishes, (2) the behavior of fishes including elasmobranchs, and (3) the distribution of marine turtles and mammals. Diver observations were also used in attempt to discern if there were any noticeable organismal responses during the transitional period between ambient OFF to energized AC or DC power states, and video footage was intended to augment the in-situ visual survey data and aid in interpretation of the results. Comparisons are provided between observation datasets between the three sites and between the point and transect count methods. Presence of several individual elasmobranch species, including sharks and stingrays, were recorded during the surveys. No apparent effect on richness could be discerned between the power on and off states. No apparent sudden animal movements were observed during transitions between power states.},
doi = {10.2172/1357262},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 9
}

Technical Report:

Save / Share:
  • The report summarizes information on the types of potential effects on marine mammals, endangered species, and rare plants which may be associated with oil and gas lease sales pending for the northern Bering Sea and arctic regions. The discussion does not imply that any specific level of impact will be sustained but rather identifies the various potential effects associated with offshore exploration, development, and production of petroleum hydrocarbon resources in the Alaska arctic regions.
  • Bromoform has been identified as the single most abundant halogenated organic compound produced by the chlorination of marine waters. To determine the potential biological effects of its release into marine waters, short-term toxicity bioassays and 28-day uptake/28-day depuration studies were conducted with five marine species: Protothaca staminea, Mercenaria mercenaria, Crassostrea virginica, Penaeus aztecus, and Brevoortia tyrannus. The bioassay studies indicate that 96-hr LC/sub 50/'s ranged from approximately 7 ppM for B. tyrannus to greater than 40 ppM for P. staminea. The behavior of P. aztecus and B. tyrannus was significantly altered by exposure to bromoform.
  • Most research on the Columbia and Snake Rivers in recent years has been directed to downstream migrant salmon (Oncorhynchus spp.) losses at dams. Comparatively little attentions has been given to adult losses. Recently an estimated 378,4000 adult salmon and steelhead (O. mykiss) were unaccounted-for from Bonneville Dam to terminal areas upstream. It is now apparent that some of this loss was due to delayed mortality from wounded by marine mammals. This report reviews the recent literature to define predatory effects of marine mammals on Columbia River salmon.
  • IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away frommore » the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.« less
  • This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance. IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations. These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with fourmore » outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.« less