skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Casimir force phase transitions in the graphene family

Abstract

The Casimir force is a universal interaction induced by electromagnetic quantum fluctuations between any types of objects. We found that the expansion of the graphene family by adding silicene, germanene and stanene (2D allotropes of Si, Ge, and Sn), lends itself as a platform to probe Dirac-like physics in honeycomb staggered systems in such a ubiquitous interaction. Here, we discover Casimir force phase transitions between these staggered 2D materials induced by the complex interplay between Dirac physics, spin-orbit coupling and externally applied fields. Particularly, we find that the interaction energy experiences different power law distance decays, magnitudes and dependences on characteristic physical constants. Furthermore, due to the topological properties of these materials, repulsive and quantized Casimir interactions become possible.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3];  [1]
  1. Univ. of South Florida, Tampa, FL (United States). Dept. of Physics
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Center for Nonlinear Studies and Theoretical Division
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1357120
Report Number(s):
LA-UR-16-27001
Journal ID: ISSN 2041-1723
Grant/Contract Number:
AC52-06NA25396; FG02-06ER46297
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Casimir Interactions, Graphene, Silicene, Hall Effects

Citation Formats

Rodriguez-Lopez, Pablo, Kort-Kamp, Wilton J. M., Dalvit, Diego A. R., and Woods, Lilia M. Casimir force phase transitions in the graphene family. United States: N. p., 2017. Web. doi:10.1038/ncomms14699.
Rodriguez-Lopez, Pablo, Kort-Kamp, Wilton J. M., Dalvit, Diego A. R., & Woods, Lilia M. Casimir force phase transitions in the graphene family. United States. doi:10.1038/ncomms14699.
Rodriguez-Lopez, Pablo, Kort-Kamp, Wilton J. M., Dalvit, Diego A. R., and Woods, Lilia M. Wed . "Casimir force phase transitions in the graphene family". United States. doi:10.1038/ncomms14699. https://www.osti.gov/servlets/purl/1357120.
@article{osti_1357120,
title = {Casimir force phase transitions in the graphene family},
author = {Rodriguez-Lopez, Pablo and Kort-Kamp, Wilton J. M. and Dalvit, Diego A. R. and Woods, Lilia M.},
abstractNote = {The Casimir force is a universal interaction induced by electromagnetic quantum fluctuations between any types of objects. We found that the expansion of the graphene family by adding silicene, germanene and stanene (2D allotropes of Si, Ge, and Sn), lends itself as a platform to probe Dirac-like physics in honeycomb staggered systems in such a ubiquitous interaction. Here, we discover Casimir force phase transitions between these staggered 2D materials induced by the complex interplay between Dirac physics, spin-orbit coupling and externally applied fields. Particularly, we find that the interaction energy experiences different power law distance decays, magnitudes and dependences on characteristic physical constants. Furthermore, due to the topological properties of these materials, repulsive and quantized Casimir interactions become possible.},
doi = {10.1038/ncomms14699},
journal = {Nature Communications},
number = ,
volume = 8,
place = {United States},
year = {Wed Mar 15 00:00:00 EDT 2017},
month = {Wed Mar 15 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3works
Citation information provided by
Web of Science

Save / Share:
  • We investigate the electromagnetic response of staggered two-dimensional materials of the graphene family, including silicene, germanene, and stanene, as they are driven through various topological phase transitions using external fields. Utilizing Kubo formalism, we compute their optical conductivity tensor taking into account the frequency and wave vector of the electromagnetic excitations, and study its behavior over the full electronic phase diagram of the materials. In particular, we find that the resonant behavior of the nonlocal Hall conductivity is strongly affected by the various topological phases present in these materials. We also consider the plasmon excitations in the graphene family andmore » find that nonlocality in the optical response can affect the plasmon dispersion spectra of the various phases. Here, we find a regime of wave vectors for which the plasmon relations for phases with trivial topology are essentially indistinguishable, while those for phases with nontrivial topology are distinct and are redshifted as the corresponding Chern number increases. Finally, the expressions for the conductivity components are valid for the entire graphene family and can be readily used by others.« less
  • Monolayer staggered materials of the graphene family present intrinsic spin-orbit coupling and can be driven through several topological phase transitions using external circularly polarized lasers and static electric or magnetic fields. We show how topological features arising from photoinduced phase transitions and the magnetic-field-induced quantum Hall effect coexist in these materials and simultaneously impact their Hall conductivity through their corresponding charge Chern numbers. We also show that the spectral response of the longitudinal conductivity contains signatures of the various phase-transition boundaries, that the transverse conductivity encodes information about the topology of the band structure, and that both present resonant peaksmore » which can be unequivocally associated with one of the four inequivalent Dirac cones present in these materials. As a result, this complex optoelectronic response can be probed with straightforward Faraday rotation experiments, allowing the study of the crossroads between quantum Hall physics, spintronics, and valleytronics.« less
  • Cited by 48