skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Additive manufacturing: Toward holistic design

Abstract

Here, additive manufacturing offers unprecedented opportunities to design complex structures optimized for performance envelopes inaccessible under conventional manufacturing constraints. Additive processes also promote realization of engineered materials with microstructures and properties that are impossible via traditional synthesis techniques. Enthused by these capabilities, optimization design tools have experienced a recent revival. The current capabilities of additive processes and optimization tools are summarized briefly, while an emerging opportunity is discussed to achieve a holistic design paradigm whereby computational tools are integrated with stochastic process and material awareness to enable the concurrent optimization of design topologies, material constructs and fabrication processes.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1356826
Report Number(s):
SAND-2017-2492J
Journal ID: ISSN 1359-6462; PII: S1359646217300957
Grant/Contract Number:
AC04-94AL85000
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Scripta Materialia
Additional Journal Information:
Journal Volume: 135; Journal Issue: C; Journal ID: ISSN 1359-6462
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; additive manufacturing; solid freeform processes; simulation; modeling; analytical methods

Citation Formats

Jared, Bradley H., Aguilo, Miguel A., Beghini, Lauren L., Boyce, Brad L., Clark, Brett W., Cook, Adam, Kaehr, Bryan J., and Robbins, Joshua. Additive manufacturing: Toward holistic design. United States: N. p., 2017. Web. doi:10.1016/j.scriptamat.2017.02.029.
Jared, Bradley H., Aguilo, Miguel A., Beghini, Lauren L., Boyce, Brad L., Clark, Brett W., Cook, Adam, Kaehr, Bryan J., & Robbins, Joshua. Additive manufacturing: Toward holistic design. United States. doi:10.1016/j.scriptamat.2017.02.029.
Jared, Bradley H., Aguilo, Miguel A., Beghini, Lauren L., Boyce, Brad L., Clark, Brett W., Cook, Adam, Kaehr, Bryan J., and Robbins, Joshua. Sat . "Additive manufacturing: Toward holistic design". United States. doi:10.1016/j.scriptamat.2017.02.029. https://www.osti.gov/servlets/purl/1356826.
@article{osti_1356826,
title = {Additive manufacturing: Toward holistic design},
author = {Jared, Bradley H. and Aguilo, Miguel A. and Beghini, Lauren L. and Boyce, Brad L. and Clark, Brett W. and Cook, Adam and Kaehr, Bryan J. and Robbins, Joshua},
abstractNote = {Here, additive manufacturing offers unprecedented opportunities to design complex structures optimized for performance envelopes inaccessible under conventional manufacturing constraints. Additive processes also promote realization of engineered materials with microstructures and properties that are impossible via traditional synthesis techniques. Enthused by these capabilities, optimization design tools have experienced a recent revival. The current capabilities of additive processes and optimization tools are summarized briefly, while an emerging opportunity is discussed to achieve a holistic design paradigm whereby computational tools are integrated with stochastic process and material awareness to enable the concurrent optimization of design topologies, material constructs and fabrication processes.},
doi = {10.1016/j.scriptamat.2017.02.029},
journal = {Scripta Materialia},
number = C,
volume = 135,
place = {United States},
year = {Sat Mar 18 00:00:00 EDT 2017},
month = {Sat Mar 18 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3works
Citation information provided by
Web of Science

Save / Share:
  • Additive manufacturing (AM) holds great potentials in enabling superior engineering functionality, streamlining supply chains, and reducing life cycle impacts compared to conventional manufacturing (CM). This study estimates the net changes in supply-chain lead time, life cycle primary energy consumption, greenhouse gas (GHG) emissions, and life cycle costs (LCC) associated with AM technologies for the case of injection molding, to shed light on the environmental and economic advantages of a shift from international or onshore CM to AM in the United States. A systems modeling framework is developed, with integrations of lead-time analysis, life cycle inventory analysis, LCC model, and scenariosmore » considering design differences, supply-chain options, productions, maintenance, and AM technological developments. AM yields a reduction potential of 3% to 5% primary energy, 4% to 7% GHG emissions, 12% to 60% lead time, and 15% to 35% cost over 1 million cycles of the injection molding production depending on the AM technology advancement in future. The economic advantages indicate the significant role of AM technology in raising global manufacturing competitiveness of local producers, while the relatively small environmental benefits highlight the necessity of considering trade-offs and balance techniques between environmental and economic performances when AM is adopted in the tooling industry. The results also help pinpoint the technological innovations in AM that could lead to broader benefits in future.« less
    Cited by 2
  • Additive manufacturing (AM) holds great potentials in enabling superior engineering functionality, streamlining supply chains, and reducing life cycle impacts compared to conventional manufacturing (CM). This study estimates the net changes in supply-chain lead time, life cycle primary energy consumption, greenhouse gas (GHG) emissions, and life cycle costs (LCC) associated with AM technologies for the case of injection molding, to shed light on the environmental and economic advantages of a shift from international or onshore CM to AM in the United States. A systems modeling framework is developed, with integrations of lead-time analysis, life cycle inventory analysis, LCC model, and scenariosmore » considering design differences, supply-chain options, productions, maintenance, and AM technological developments. AM yields a reduction potential of 3% to 5% primary energy, 4% to 7% GHG emissions, 12% to 60% lead time, and 15% to 35% cost over 1 million cycles of the injection molding production depending on the AM technology advancement in future. The economic advantages indicate the significant role of AM technology in raising global manufacturing competitiveness of local producers, while the relatively small environmental benefits highlight the necessity of considering trade-offs and balance techniques between environmental and economic performances when AM is adopted in the tooling industry. The results also help pinpoint the technological innovations in AM that could lead to broader benefits in future.« less
  • Magnetically isotropic bonded magnets with a high loading fraction of 70 vol.% Nd-Fe-B are fabricated via an extrusion-based additive manufacturing, or 3D printing system that enables rapid production of large parts. The density of the printed magnet is ~5.2 g/cm 3. The room temperature magnetic properties are: intrinsic coercivity Hci = 8.9 kOe (708.2 kA/m), remanence Br = 5.8 kG (0.58 T), and energy product (BH)max = 7.3 MGOe (58.1 kJ/m 3). The as-printed magnets are then coated with two types of polymers, both of which improve the thermal stability as revealed by flux aging loss measurements. Tensile tests performedmore » at 25 °C and 100 °C show that the ultimate tensile stress (UTS) increases with increasing loading fraction of the magnet powder, and decreases with increasing temperature. AC magnetic susceptibility and resistivity measurements show that the 3D printed Nd-Fe-B bonded magnets exhibit extremely low eddy current loss and high resistivity. Lastly, we demonstrate the performance of the 3D printed magnets in a DC motor configuration via back electromotive force measurements.« less
  • Pioneer cellulosic biorefineries across the United States rely on a conventional feedstock supply system based on one-year contracts with local growers, who harvest, locally store, and deliver feedstock in low-density format to the conversion facility. While the conventional system is designed for high biomass yield areas, pilot scale operations have experienced feedstock supply shortages and price volatilities due to reduced harvests and competition from other industries. Regional supply dependency and the inability to actively manage feedstock stability and quality, provide operational risks to the biorefinery, which translate into higher investment risk. The advanced feedstock supply system based on a networkmore » of depots can mitigate many of these risks and enable wider supply system benefits. This paper compares the two concepts from a system-level perspective beyond mere logistic costs. It shows that while processing operations at the depot increase feedstock supply costs initially, they enable wider system benefits including supply risk reduction (leading to lower interest rates on loans), industry scale-up, conversion yield improvements, and reduced handling equipment and storage costs at the biorefinery. When translating these benefits into cost reductions per liter of gasoline equivalent (LGE), we find that total cost reductions between –$0.46 to –$0.21 per LGE for biochemical and –$0.32 to –$0.12 per LGE for thermochemical conversion pathways are possible. Naturally, these system level benefits will differ between individual actors along the feedstock supply chain. Further research is required with respect to depot sizing, location, and ownership structures.« less