skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Systematic parameter inference in stochastic mesoscopic modeling

Journal Article · · Journal of Computational Physics

We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are “sparse”. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1356485
Report Number(s):
PNNL-SA-120733; KJ0401000
Journal Information:
Journal of Computational Physics, Vol. 330; ISSN 0021-9991
Publisher:
Elsevier
Country of Publication:
United States
Language:
English

Similar Records

Systematic parameter inference in stochastic mesoscopic modeling
Journal Article · Wed Feb 01 00:00:00 EST 2017 · Journal of Computational Physics · OSTI ID:1356485

Energy-conserving dissipative particle dynamics with temperature-dependent properties
Journal Article · Thu May 01 00:00:00 EDT 2014 · Journal of Computational Physics, 265:113-127 · OSTI ID:1356485

Transport dissipative particle dynamics model for mesoscopic advection- diffusion-reaction problems
Journal Article · Tue Jul 07 00:00:00 EDT 2015 · Journal of Chemical Physics, 143(1):014101 · OSTI ID:1356485

Related Subjects