skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural reorganization of the fungal endoplasmic reticulum upon induction of mycotoxin biosynthesis

Abstract

Eukaryotic cells routinely compartmentalize metabolic pathways to particular organelles for biosynthetic purposes. Relatively few studies have addressed the cellular localization of pathways for secondary metabolites synthesis. In this study, the phytopathogenic fungus Fusarium graminearum reorganized its endoplasmic reticulum (ER) when triggered to produce mycotoxins, both in vitro and in planta. Fluorescence tagged biosynthetic proteins were found to co-localize with the modified ER as confirmed by co-fluorescence and co-purification with known ER proteins. Microscopy, cell sorting, and proteomics were applied in this FICUS collaborative effort.

Authors:
 [1];  [2];  [3];  [3];  [3];  [4];  [4];  [3];  [5]
  1. Univ. of Minnesota, St. Paul, MN (United States)
  2. USDA ARS Cereal Disease Lab., St. Paul, MN (United States)
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  4. Oregon State Univ., Corvallis, OR (United States)
  5. USDA ARS Cereal Disease Lab., St. Paul, MN (United States); Univ. of Minnesota, St. Paul, MN (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1356473
Report Number(s):
PNNL-SA-125650
Journal ID: ISSN 2045-2322; KP1704020
Grant/Contract Number:
AC05-76RL01830
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; endoplasmic reticulum; fungi; trichothecenes; fluorescence; proteomics; differentiation; fungal biology

Citation Formats

Boenisch, Marike Johanne, Broz, Karen Lisa, Purvine, Samuel Owen, Chrisler, William Byron, Nicora, Carrie Diana, Connolly, Lanelle Reine, Freitag, Michael, Baker, Scott Edward, and Kistler, Harold Corby. Structural reorganization of the fungal endoplasmic reticulum upon induction of mycotoxin biosynthesis. United States: N. p., 2017. Web. doi:10.1038/srep44296.
Boenisch, Marike Johanne, Broz, Karen Lisa, Purvine, Samuel Owen, Chrisler, William Byron, Nicora, Carrie Diana, Connolly, Lanelle Reine, Freitag, Michael, Baker, Scott Edward, & Kistler, Harold Corby. Structural reorganization of the fungal endoplasmic reticulum upon induction of mycotoxin biosynthesis. United States. doi:10.1038/srep44296.
Boenisch, Marike Johanne, Broz, Karen Lisa, Purvine, Samuel Owen, Chrisler, William Byron, Nicora, Carrie Diana, Connolly, Lanelle Reine, Freitag, Michael, Baker, Scott Edward, and Kistler, Harold Corby. Mon . "Structural reorganization of the fungal endoplasmic reticulum upon induction of mycotoxin biosynthesis". United States. doi:10.1038/srep44296. https://www.osti.gov/servlets/purl/1356473.
@article{osti_1356473,
title = {Structural reorganization of the fungal endoplasmic reticulum upon induction of mycotoxin biosynthesis},
author = {Boenisch, Marike Johanne and Broz, Karen Lisa and Purvine, Samuel Owen and Chrisler, William Byron and Nicora, Carrie Diana and Connolly, Lanelle Reine and Freitag, Michael and Baker, Scott Edward and Kistler, Harold Corby},
abstractNote = {Eukaryotic cells routinely compartmentalize metabolic pathways to particular organelles for biosynthetic purposes. Relatively few studies have addressed the cellular localization of pathways for secondary metabolites synthesis. In this study, the phytopathogenic fungus Fusarium graminearum reorganized its endoplasmic reticulum (ER) when triggered to produce mycotoxins, both in vitro and in planta. Fluorescence tagged biosynthetic proteins were found to co-localize with the modified ER as confirmed by co-fluorescence and co-purification with known ER proteins. Microscopy, cell sorting, and proteomics were applied in this FICUS collaborative effort.},
doi = {10.1038/srep44296},
journal = {Scientific Reports},
number = ,
volume = 7,
place = {United States},
year = {Mon Mar 13 00:00:00 EDT 2017},
month = {Mon Mar 13 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • Human papillomaviruses (HPV) infect stratified epithelia and link their life cycles to epithelial differentiation. The HPV E5 protein plays a role in the productive phase of the HPV life cycle but its mechanism of action is still unclear. We identify a new binding partner of E5, A4, using a membrane-associated yeast-two hybrid system. The A4 protein co-localizes with HPV 31 E5 in perinuclear regions and forms complexes with E5 and Bap31. In normal keratinocytes, A4 is found primarily in basal cells while in HPV positive cells high levels of A4 are seen in both undifferentiated and differentiated cells. Reduction ofmore » A4 expression by shRNAs, enhanced HPV genome amplification and increased cell proliferation ability following differentiation but this was not seen in cells lacking E5. Our studies suggest that the A4 protein is an important E5 binding partner that plays a role in regulating cell proliferation ability upon differentiation. - Highlights: • A4 associates with HPV 31 E5 proteins. • A4 is localized to endoplasmic reticulum. • HPV proteins induce A4 expression in suprabasal layers of stratified epithelium. • E5 is important for proliferation ability of differentiating HPV positive cells.« less
  • Rhein is an active component of rhubarb; a traditional Chinese medicine reported to induce apoptosis and cause liver toxicity. However, rhein's apoptotic-inducing effects, as well as its molecular mechanisms of action on hepatic cells need to be further explored. In the present study, rhein was found to trigger apoptosis in primary human hepatic HL-7702 cells as showed by annexin V/PI double staining assay and nuclear morphological changes demonstrated by Hoechst 33258 staining. Moreover, it was observed that the mechanism implicated in rhein-induced apoptosis was caspase-dependent, presumably via ER-stress associated pathways, as illustrated by up-regulation of glucose-regulated protein 78 (GRP 78), PKR-likemore » ER kinase (PERK), C-Jun N-terminal kinase (JNK) and CCAAT/enhancer-binding protein homologous protein (CHOP). Meanwhile, caspase-4 as a hallmark of ER-stress, was also showed to be activated following by caspase-3 activation. Furthermore, rhein also promoted intracellular elevation of calcium that contributed in apoptosis induction. Interestingly, pre-treatment with calpain inhibitor I reduced the effects of rhein on apoptosis induction and JNK activation. These data suggested that rhein-induced apoptosis through ER-stress and elevated intracellular calcium level in HL-7702 cells. - Highlights: • Rhein triggers apoptotic cell death on primary human hepatic HL-7702 cells. • Rhein leads to caspase-4 activation in HL-7702 cells. • Rhein induces endoplasmic reticulum stress pathways in HL-7702 cells. • Rhein causes elevation of intracellular calcium concentrations in HL-7702 cells.« less
  • Nodularin is produced by the cyanobacterium Nodularia spumigena. It is of concern due to hepatotoxicity in humans and animals. Here we investigated unexplored molecular mechanisms by transcription analysis in human liver cells, focusing on induction of pro-inflammatory cytokines, the tumor necrosis factor α (TNF-α), endoplasmic reticulum (ER) stress and components of the activator protein-1 complex in human hepatoma cells (Huh7) exposed to non-cytotoxic (0.1 and 1 μM) and toxic concentrations (5 μM) for 24, 48, and 72 h. Transcripts of TNF-α and ER stress marker genes were strongly induced at 1 and 5 μM at all time-points. TNF-α led tomore » induction of mitogen-activated protein kinases (MAPK), as demonstrated by induction of CJUN and CFOS, which form the AP-1 complex. Human primary liver cells reacted more sensitive than Huh7 cells. They showed higher cytotoxicity and induction of TNF-α and ER stress at 2.5 nM, while HepG2 cells were insensitive up to 10 μM due to low expression of organic anion transporting polypeptides. Furthermore, nodularin led to induction of TNF-α protein, and CCAAT/enhancer-binding protein-homologous (CHOP) protein. Our data indicate that nodularin induces inflammation and ER stress and leads to activation of MAPK in liver cells. All of these activated pathways, which were analysed here for the first time in detail, may contribute to the hepatotoxic, and tumorigenic action of nodularin. - Highlights: • Toxicity of nodularin and its mechanisms of action are poorly understood. • We investigated mechanisms of nodularin toxicity in human liver cell lines and human hepatocytes. • We identified several pathways involved in nodularin toxicity. • Nodularin induces TNF-α, MAPK pathway and ER stress • These activated pathways may contribute to the hepatotoxic and tumorigenic action of nodularin.« less
  • ERAP1 trims antigen precursors to fit into MHC class I proteins. To fulfill this function, ERAP1 has unique substrate preferences, trimming long peptides but sparing shorter ones. To identify the structural basis for ERAP1's unusual properties, we determined the X-ray crystal structure of human ERAP1 bound to bestatin. The structure reveals an open conformation with a large interior compartment. An extended groove originating from the enzyme's catalytic center can accommodate long peptides and has features that explain ERAP1's broad specificity for antigenic peptide precursors. Structural and biochemical analyses suggest a mechanism for ERAP1's length-dependent trimming activity, whereby binding of longmore » rather than short substrates induces a conformational change with reorientation of a key catalytic residue toward the active site. ERAP1's unique structural elements suggest how a generic aminopeptidase structure has been adapted for the specialized function of trimming antigenic precursors.« less