skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Topological structure prediction in binary nanoparticle superlattices

Abstract

Systems of spherical nanoparticles with capping ligands have been shown to self-assemble into beautiful superlattices of fascinating structure and complexity. Here, I show that the spherical geometry of the nanoparticle imposes constraints on the nature of the topological defects associated with the capping ligand and that such topological defects control the structure and stability of the superlattices that can be assembled. Furthermore, all of these considerations form the basis for the orbifold topological model (OTM) described in this paper. Finally, the model quantitatively predicts the structure of super-lattices where capping ligands are hydrocarbon chains in excellent agreement with experimental results, explains the appearance of low packing fraction lattices as equilibrium, why certain similar structures are more stable (bccAB 6vs. CaB 6, AuCu vs. CsCl, etc.) and many other experimental observations.

Authors:
 [1]
  1. Ames Lab. and Iowa State Univ., Ames, IA (United States). Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1355757
Report Number(s):
IS-J 8309
Journal ID: ISSN 1744-683X; SMOABF
Grant/Contract Number:
AC02-07CH11358
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Soft Matter
Additional Journal Information:
Journal Volume: 13; Journal Issue: 1; Journal ID: ISSN 1744-683X
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Travesset, A. Topological structure prediction in binary nanoparticle superlattices. United States: N. p., 2017. Web. doi:10.1039/C6SM00713A.
Travesset, A. Topological structure prediction in binary nanoparticle superlattices. United States. doi:10.1039/C6SM00713A.
Travesset, A. Thu . "Topological structure prediction in binary nanoparticle superlattices". United States. doi:10.1039/C6SM00713A. https://www.osti.gov/servlets/purl/1355757.
@article{osti_1355757,
title = {Topological structure prediction in binary nanoparticle superlattices},
author = {Travesset, A.},
abstractNote = {Systems of spherical nanoparticles with capping ligands have been shown to self-assemble into beautiful superlattices of fascinating structure and complexity. Here, I show that the spherical geometry of the nanoparticle imposes constraints on the nature of the topological defects associated with the capping ligand and that such topological defects control the structure and stability of the superlattices that can be assembled. Furthermore, all of these considerations form the basis for the orbifold topological model (OTM) described in this paper. Finally, the model quantitatively predicts the structure of super-lattices where capping ligands are hydrocarbon chains in excellent agreement with experimental results, explains the appearance of low packing fraction lattices as equilibrium, why certain similar structures are more stable (bccAB6vs. CaB6, AuCu vs. CsCl, etc.) and many other experimental observations.},
doi = {10.1039/C6SM00713A},
journal = {Soft Matter},
number = 1,
volume = 13,
place = {United States},
year = {Thu Apr 27 00:00:00 EDT 2017},
month = {Thu Apr 27 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8works
Citation information provided by
Web of Science

Save / Share:
  • Cited by 10
  • Driven by the hypothesis that a sufficiently continuous short-ranged potential is able to account for shell flexibility and phonon modes and therefore provides a more realistic description of nanoparticle interactions than a hard sphere model, we compute the solid phase diagram of particles of different radii interacting with an inverse power law potential. From a pool of 24 candidate lattices, the free energy is optimized with respect to additional internal parameters and the p-exponent, determining the short-range properties of the potential, is varied between p = 12 and p = 6. The phase diagrams contain the phases found in ongoingmore » self-assembly experiments, including DNA programmable self-assembly and nanoparticles with capping ligands assembled by evaporation from an organic solvent. Thus, the resulting phase diagrams can be mapped quantitatively to existing experiments as a function of only two parameters: Nanoparticle radius ratio (γ) and softness asymmetry.« less
  • The discovery of quasicrystals in 1984 changed our view of ordered solids as periodic structures and introduced new long-range-ordered phases lacking any translational symmetry. Quasicrystals permit symmetry operations forbidden in classical crystallography, for example five-, eight-, ten- and 12-fold rotations, yet have sharp diffraction peaks. Intermetallic compounds have been observed to form both metastable and energetically stabilized quasicrystals; quasicrystalline order has also been reported for the tantalum telluride phase with an approximate Ta{sub 1.6}Te composition. Later, quasicrystals were discovered in soft matter, namely supramolecular structures of organic dendrimers and tri-block copolymers, and micrometre-sized colloidal spheres have been arranged into quasicrystallinemore » arrays by using intense laser beams that create quasi-periodic optical standing-wave patterns. Here we show that colloidal inorganic nanoparticles can self-assemble into binary aperiodic superlattices. We observe formation of assemblies with dodecagonal quasicrystalline order in different binary nanoparticle systems: 13.4-nm Fe{sub 2}O{sub 3} and 5-nm Au nanocrystals, 12.6-nm Fe{sub 3}O{sub 4} and 4.7-nm Au nanocrystals, and 9-nm PbS and 3-nm Pd nanocrystals. Such compositional flexibility indicates that the formation of quasicrystalline nanoparticle assemblies does not require a unique combination of interparticle interactions, but is a general sphere-packing phenomenon governed by the entropy and simple interparticle potentials. We also find that dodecagonal quasicrystalline superlattices can form low-defect interfaces with ordinary crystalline binary superlattices, using fragments of (3{sup 3}.4{sup 2}) Archimedean tiling as the 'wetting layer' between the periodic and aperiodic phases.« less
  • Nanoscale components can be self-assembled into static three-dimensional structures, arrays and clusters using biomolecular motifs. The structural plasticity of biomolecules and the reversibility of their interactions can also be used to make nanostructures that are dynamic, reconfigurable and responsive. DNA has emerged as an ideal biomolecular motif for making such nanostructures, partly because its versatile morphology permits in situ conformational changes using molecular stimuli. This has allowed DNA nanostructures to exhibit reconfigurable topologies and mechanical movement. Recently, researchers have begun to translate this approach to nanoparticle interfaces, where, for example, the distances between nanoparticles can be modulated, resulting in amore » distance-dependent plasmonic response. Here, we report the assembly of nanoparticles into three-dimensional superlattices and dimer clusters, using a reconfigurable DNA device that acts as an interparticle linkage. The interparticle distances in the superlattices and clusters can be modified, while preserving structural integrity, by adding molecular stimuli (simple DNA strands) after the self-assembly processes has been completed. Both systems were found to switch between two distinct rigid states, but a transition to a flexible device configuration within a superlattice showed a significant hysteresis.« less
  • The solid-phase diagram of binary systems consisting of particles of diameter σ A=σ and σ B=γσ (γ≤1) interacting with an inverse p = 12 power law is investigated as a paradigm of a soft potential. In addition to the diameter ratio γ that characterizes hard-sphere models, the phase diagram is a function of an additional parameter that controls the relative interaction strength between the different particle types. Phase diagrams are determined from extremes of thermodynamic functions by considering 15 candidate lattices. In general, it is shown that the phase diagram of a soft repulsive potential leads to the morphological diversitymore » observed in experiments with binary nanoparticles, thus providing a general framework to understand their phase diagrams. In addition, particular emphasis is shown to the two most successful crystallization strategies so far: evaporation of solvent from nanoparticles with grafted hydrocarbon ligands and DNA programmable self-assembly.« less