skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fermi/LAT detection of a transient gamma-ray flare in the vicinity of the binary star DG CVn

Abstract

Solar flares are regularly detected by the Large Area Telescope (LAT) on board the Fermi satellite, however no γ-ray emission from other stellar eruptions has ever been captured. The Swift detection in 2014 April of a powerful outburst originating from DG CVn, with associated optical and radio emissions, enticed us to search for possible 0.1–100 GeV emission from this flaring nearby binary star using the Fermi/LAT. No γ-ray emission is detected from DG CVn in 2014, but we report a significant γ-ray excess in 2012 November, at a position consistent with that of the binary. There are no reports of contemporary flaring at other wavelengths from DG CVn or any other source within the error circle of the γ-ray source. As a result, we argue that the γ-ray flare is more likely to have been associated with a background blazar than with DG CVn and identify a candidate for follow-up study.

Authors:
 [1];  [2];  [3]
  1. Lab. AIM (CEA/IRFU - CNRS/INSU - Univ. Paris Diderot), Gif-sur-Yvette (France)
  2. Lab. AIM (CEA/IRFU - CNRS/INSU - Univ. Paris Diderot), Gif-sur-Yvette (France); Univ. Orleans, Nancay (France)
  3. Univ. Grenoble Alpes, Grenoble (France); CNRS, IPAG, Grenoble (France)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1355725
Grant/Contract Number:
ANR-12-BS05-0009; AC02-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 467; Journal Issue: 4; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; acceleration of particles; stars: flare; stars: individual (DG CVn); gamma-rays: stars

Citation Formats

Loh, Alan, Corbel, Stéphane, and Dubus, Guillaume. Fermi/LAT detection of a transient gamma-ray flare in the vicinity of the binary star DG CVn. United States: N. p., 2017. Web. doi:10.1093/mnras/stx396.
Loh, Alan, Corbel, Stéphane, & Dubus, Guillaume. Fermi/LAT detection of a transient gamma-ray flare in the vicinity of the binary star DG CVn. United States. doi:10.1093/mnras/stx396.
Loh, Alan, Corbel, Stéphane, and Dubus, Guillaume. Thu . "Fermi/LAT detection of a transient gamma-ray flare in the vicinity of the binary star DG CVn". United States. doi:10.1093/mnras/stx396. https://www.osti.gov/servlets/purl/1355725.
@article{osti_1355725,
title = {Fermi/LAT detection of a transient gamma-ray flare in the vicinity of the binary star DG CVn},
author = {Loh, Alan and Corbel, Stéphane and Dubus, Guillaume},
abstractNote = {Solar flares are regularly detected by the Large Area Telescope (LAT) on board the Fermi satellite, however no γ-ray emission from other stellar eruptions has ever been captured. The Swift detection in 2014 April of a powerful outburst originating from DG CVn, with associated optical and radio emissions, enticed us to search for possible 0.1–100 GeV emission from this flaring nearby binary star using the Fermi/LAT. No γ-ray emission is detected from DG CVn in 2014, but we report a significant γ-ray excess in 2012 November, at a position consistent with that of the binary. There are no reports of contemporary flaring at other wavelengths from DG CVn or any other source within the error circle of the γ-ray source. As a result, we argue that the γ-ray flare is more likely to have been associated with a background blazar than with DG CVn and identify a candidate for follow-up study.},
doi = {10.1093/mnras/stx396},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 4,
volume = 467,
place = {United States},
year = {Thu Feb 16 00:00:00 EST 2017},
month = {Thu Feb 16 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • Here, we report on observations of the supernova remnant Cassiopeia A in the energy range from 100 MeV to 100 GeV using 44 months of observations from the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope. We perform a detailed spectral analysis of this source and report on a low-energy break in the spectrum atmore » $$1.72^{+1.35}_{-0.89}$$ GeV. By comparing the results with models for the gamma-ray emission, we find that hadronic emission is preferred for the GeV energy range.« less
  • We present a detailed investigation of the γ-ray emission in the vicinity of the supernova remnant (SNR) W28 (G6.4–0.1) observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. We detected significant γ-ray emission spatially coincident with TeV sources HESS J1800–240A, B, and C, located outside the radio boundary of the SNR. Their spectra in the 2-100 GeV band are consistent with the extrapolation of the power-law spectra of the TeV sources. We also identified a new source of GeV emission, dubbed Source W, which lies outside the boundary of TeV sources and coincides with radiomore » emission from the western part of W28. All of the GeV γ-ray sources overlap with molecular clouds in the velocity range from 0 to 20 km s{sup –1}. Under the assumption that the γ-ray emission toward HESS J1800–240A, B, and C comes from π{sup 0} decay due to the interaction between the molecular clouds and cosmic rays (CRs) escaping from W28, they can be naturally explained by a single model in which the CR diffusion coefficient is smaller than the theoretical expectation in the interstellar space. The total energy of the CRs escaping from W28 is constrained through the same modeling to be larger than ∼2 × 10{sup 49} erg. The emission from Source W can also be explained with the same CR escape scenario.« less
  • We report the discovery of extended gamma-ray emission measured by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) HB 3 (G132.7+1.3) and the W3 II complex adjacent to the southeast of the remnant. W3 is spatially associated with bright {sup 12}CO (J = 1–0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon–nucleon interactions between accelerated hadrons and interstellar gas provides amore » reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3.« less
  • We report the discovery of extended gamma-ray emission measured by the Large Area Tele- scope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova rem- nant (SNR) HB 3 (G132.7+1.3) and the W3 HII complex adjacent to the southeast of the remnant. W3 is spatially associated with bright 12CO (J=1-0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in inter- actions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon-nucleon interactions betweenmore » accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission fromW3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3.« less