skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the DarkSide-50 Direct Dark Matter Experiment

Abstract

While evidence of non-baryonic dark matter has been accumulating for decades, its exact nature continues to remain a mystery. Weakly Interacting Massive Particles (WIMPs) are a well motivated candidate which appear in certain extensions of the Standard Model, independently of dark matter theory. If such particles exist, they should occasionally interact with particles of normal matter, producing a signal which may be detected. The DarkSide-50 direct dark matter experiment aims to detect the energy of recoiling argon atoms due to the elastic scattering of postulated WIMPs. In order to make such a discovery, a clear understanding of both the background and signal region is essential. This understanding requires a careful study of the detector's response to radioactive sources, which in turn requires such sources may be safely introduced into or near the detector volume and reliably removed. The CALibration Insertaion System (CALIS) was designed and built for this purpose in a j oint effort between Fermi National Laboratory and the University of Hawaii. This work describes the design and testing of CALIS, its installation and commissioning at the Laboratori Nazionali del Gran Sasso (LNGS) and the multiple calibration campaigns which have successfully employed it. As nuclear recoils produced by WIMPs are indistinguishable from those produced by neutrons, radiogenic neutrons are both the most dangerous class of background and a vital calibration source for the study of the potential WIMP signal. Prior to the calibration of DarkSide-50 with radioactive neutron sources, the acceptance region was determined by the extrapolation of nuclear recoil data from a separate, dedicated experiment, ScENE, which measured the distribution of the pulse shape discrimination parameter, $$f_{90}$$, for nuclear recoils of known energies. This work demonstrates the validity of the extrapolation of ScENE values to DarkSide-50, by direct comparison of the $$f_{90}$$ distributio n of nuclear recoils from ScENE and an AmBe calibration sour! ce. The combined acceptance as defined by ScENE and the \textit{in-situ} AmBe calibration were used to establish the best WIMP exclusion limit on an argon target. Unfortunately, radioactive sources used for the calibration of DarkSide-50 are universally accompanied by gamma decays, which obscure the low energy region where most WIMP interactions are expected to occur and seem to make continuing dependence on an external measurement such as ScENE inevitable. However, this work presents a novel method of nuclear recoil calibration employing event selection, unique to the design of DarkSide-50, which produces a nearly pure sample of nuclear recoils. Further, it describes the execution of a neutron calibration campaign, from planning to analysis, which yielded a valuable data set for defining the acceptance region. Together with the event selection techniques, this allows for the definition of the acceptance region independent of ScENE values. Two analytical models of the $$f_{90 }$$ distribution are described and their results for nuclear recoils are compared. Finally, a detailed study of integrated noise in nuclear and electron recoil

Authors:
 [1]
  1. Univ. of Hawaii, Honolulu, HI (United States)
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1354860
Report Number(s):
FERMILAB-THESIS-2017-14
1597507
DOE Contract Number:
AC02-07CH11359
Resource Type:
Thesis/Dissertation
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Edkins, Erin Elisabeth. Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the DarkSide-50 Direct Dark Matter Experiment. United States: N. p., 2017. Web. doi:10.2172/1354860.
Edkins, Erin Elisabeth. Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the DarkSide-50 Direct Dark Matter Experiment. United States. doi:10.2172/1354860.
Edkins, Erin Elisabeth. Mon . "Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the DarkSide-50 Direct Dark Matter Experiment". United States. doi:10.2172/1354860. https://www.osti.gov/servlets/purl/1354860.
@article{osti_1354860,
title = {Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the DarkSide-50 Direct Dark Matter Experiment},
author = {Edkins, Erin Elisabeth},
abstractNote = {While evidence of non-baryonic dark matter has been accumulating for decades, its exact nature continues to remain a mystery. Weakly Interacting Massive Particles (WIMPs) are a well motivated candidate which appear in certain extensions of the Standard Model, independently of dark matter theory. If such particles exist, they should occasionally interact with particles of normal matter, producing a signal which may be detected. The DarkSide-50 direct dark matter experiment aims to detect the energy of recoiling argon atoms due to the elastic scattering of postulated WIMPs. In order to make such a discovery, a clear understanding of both the background and signal region is essential. This understanding requires a careful study of the detector's response to radioactive sources, which in turn requires such sources may be safely introduced into or near the detector volume and reliably removed. The CALibration Insertaion System (CALIS) was designed and built for this purpose in a j oint effort between Fermi National Laboratory and the University of Hawaii. This work describes the design and testing of CALIS, its installation and commissioning at the Laboratori Nazionali del Gran Sasso (LNGS) and the multiple calibration campaigns which have successfully employed it. As nuclear recoils produced by WIMPs are indistinguishable from those produced by neutrons, radiogenic neutrons are both the most dangerous class of background and a vital calibration source for the study of the potential WIMP signal. Prior to the calibration of DarkSide-50 with radioactive neutron sources, the acceptance region was determined by the extrapolation of nuclear recoil data from a separate, dedicated experiment, ScENE, which measured the distribution of the pulse shape discrimination parameter, $f_{90}$, for nuclear recoils of known energies. This work demonstrates the validity of the extrapolation of ScENE values to DarkSide-50, by direct comparison of the $f_{90}$ distributio n of nuclear recoils from ScENE and an AmBe calibration sour! ce. The combined acceptance as defined by ScENE and the \textit{in-situ} AmBe calibration were used to establish the best WIMP exclusion limit on an argon target. Unfortunately, radioactive sources used for the calibration of DarkSide-50 are universally accompanied by gamma decays, which obscure the low energy region where most WIMP interactions are expected to occur and seem to make continuing dependence on an external measurement such as ScENE inevitable. However, this work presents a novel method of nuclear recoil calibration employing event selection, unique to the design of DarkSide-50, which produces a nearly pure sample of nuclear recoils. Further, it describes the execution of a neutron calibration campaign, from planning to analysis, which yielded a valuable data set for defining the acceptance region. Together with the event selection techniques, this allows for the definition of the acceptance region independent of ScENE values. Two analytical models of the $f_{90 }$ distribution are described and their results for nuclear recoils are compared. Finally, a detailed study of integrated noise in nuclear and electron recoil},
doi = {10.2172/1354860},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2017},
month = {Mon May 01 00:00:00 EDT 2017}
}

Thesis/Dissertation:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this thesis or dissertation.

Save / Share:
  • The existence of dark matter is known because of its gravitational effects, and although its nature remains undisclosed, there is a growing indication that the galactic halo could be permeated by weakly interacting massive particles (WIMPs) with mass of the order ofmore » $100$$\,GeV/c$$^2$ and coupling with ordinary matter at or below the weak scale. In this context, DarkSide-50 aims to direct observe WIMP-nucleon collisions in a liquid argon dual phase time-projection chamber located deep underground at Gran Sasso National Laboratory, in Italy. In this work a re-analysis of the data that led to the best limit on WIMP-nucleon cross section with an argon target is done. As starting point of the new approach, the energy reconstruction of events is considered: a new energy variable is developed where anti-correlation between ionization and scintillation produced by an interaction is taken into account. As first result, a better energy resolution is achieved. In this new energy framewor k, access is granted to micro-physics parameters fundamental to argon scintillation such as the recombination and quenching as a function of the energy. The improved knowledge of recombination and quenching allows to develop a new model for distinguish between events possibly due to WIMPs and backgrounds. In light of the new model, the final result of this work is a more stringent limit on spin independent WIMP-nucleon cross section with an argon target. This work was supervised by Marco Pallavicini and was completed in collaboration with members of the DarkSide collaboration.« less
  • While there is tremendous astrophysical and cosmological evidence for dark matter, its precise nature is one of the most significant open questions in modern physics. Weakly interacting massive particles (WIMPs) are a particularly compelling class of dark matter candidates with masses of the order 100 GeV and couplings to ordinary matter at the weak scale. Direct detection experiments are aiming to observe the low energy (<100 keV) scattering of dark matter off normal matter. With the liquid noble technology leading the way in WIMP sensitivity, no conclusive signals have been observed yet. The DarkSide experiment is looking for WIMP darkmore » matter using a liquid argon target in a dual-phase time projection chamber located deep underground at Gran Sasso National Laboratory (LNGS) in Italy. Currently filled with argon obtained from underground sources, which is greatly reduced in radioactive 39Ar, DarkSide-50 recently made the most sensitive measurement of the 39Ar activity in underground argon and used it to set the strongest WIMP dark matter limit using liquid argon to date. This work describes the full chain of analysis used to produce the recent dark matter limit, from reconstruction of raw data to evaluation of the final exclusion curve. The DarkSide- 50 apparatus is described in detail, followed by discussion of the low level reconstruction algorithms. The algorithms are then used to arrive at three broad analysis results: The electroluminescence signals in DarkSide-50 are used to perform a precision measurement of ii longitudinal electron diffusion in liquid argon. A search is performed on the underground argon data to identify the delayed coincidence signature of 85Kr decays to the 85mRb state, a crucial ingredient in the measurement of the 39Ar activity in the underground argon. Finally, a full description of the WIMP search is given, including development of cuts, efficiencies, energy scale, and exclusion curve in the WIMP mass vs. spin-independent WIMP-nucleon scattering cross section plane. This work was supervised by Hanguo Wang and was completed in collaboration with members of the DarkSide collaboration.« less
  • Over the course of decades, there has been mounting astronomical evidence for non-baryonic dark matter, yet its precise nature remains elusive. A favored candidate for dark matter is the Weakly Interacting Massive Particle (WIMP) which arises naturally out of extensions to the Standard Model. WIMPs are expected to occasionally interact with particles of normal matter through nuclear recoils. DarkSide-50 aims to detect this type of particle through the use of a two-phase liquid argon time projection chamber. To make a claim of discovery, an accurate understanding of the background and WIMP search region is imperative. Knowledge of the backgrounds ismore » done through extensive studies of DarkSide-50's response to electron and nuclear recoils. The CALibration Insertion System (CALIS) was designed and built for the purpose of introduc- ing radioactive sources into or near the detector in a joint eort between Fermi National Laboratory (FNAL) and the University of Hawai'i at Manoa. This work describes the testing, installation, and commissioning of CALIS at the Laboratori Nazionali del Gran Sasso. CALIS has been used in mul- tiple calibration campaigns with both neutron and sources. In this work, DarkSide-50's response to electron recoils, which are important for background estimations, was studied through the use of calibration sources by constructing a global energy variable which takes into account the anti- correlation between scintillation and ionization signals produced by interactions in the liquid argon. Accurately reconstructing the event energy correlates directly with quantitatively understanding the WIMP sensitivity in DarkSide-50. This work also validates the theoretically predicted decay spectrum of 39Ar against 39Ar decay data collected in the early days of DarkSide-50 while it was lled with atmospheric argon; a validation of this type is not readily found in the literature. Finally, we show how well the constructed energy variable can predict energy spectra for the calibration sources and for 39Ar.« less
  • The Cryogenic Dark Matter Search (CDMS) is designed to detectWeakly-Interacting Massive Particles (WIMPs) in the Milky Way halo. The phase known as CDMS II was performed in the Soudan Underground Laboratory. The final set of CDMS II data, collected in 2007-8 and referred to as Runs 125-8, represents the largest exposure to date for the experiment. We seek collisions between WIMPs and atomic nuclei in disk-shaped germanium and silicon detectors. A key design feature is to keep the rate of collisions from known particles producing WIMP-like signals very small. The largest category of such background is interactions with electrons inmore » the detectors that occur very close to one of the faces of the detector. The next largest category is collisions between energetic neutrons that bypass the experimental shielding and nuclei in the detectors. Analytical efforts to discriminate these backgrounds and to estimate the rate at which such discrimination fails have been refined and improved throughout each phase of CDMS. Next-generation detectors for future phases of CDMS require testing at cryogenic test facilities. One such facility was developed at the University of Minnesota in 2007 and has been used continuously since then to test detectors for the next phase of the experiment, known as SuperCDMS.« less
  • Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on themore » $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($$\alpha$$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and development that informed the design of the DarkSide-50 boron-loaded liquid scintillator neutron veto. We describe the specific implementation of this veto system in DarkSide-50, including a description of its performance, and show that it can reject neutrons with a high enough e_ciency to allow DarkSide-50 to run background-free for three years.« less