skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanical membrane for the separation of a paramagnetic constituent from a fluid

Abstract

The disclosure provides an apparatus and method for the separation of a paramagnetic component from a mixture using a mechanical membrane apparatus. The mechanical membrane comprises a supporting material having a plurality of pores where each pore is surrounded by a plurality of magnetic regions. The magnetic regions augment a magnetic field on one side of the supporting material while mitigating the field to near zero on the opposite side. In operation, a flow of fluid such as air comprising a paramagnetic component such as O.sub.2 is directed toward the mechanical membrane, and the paramagnetic component is typically attracted toward a magnetic field surrounding a pore while dimagnetic components such as N.sub.2 are generally repelled. As some portion of the fluid passes through the plurality of magnetic apertures to the opposite side of the mechanical membrane, the mechanical membrane generates a fluid enriched in the paramagnetic component. Alternately, the magnetic field may act to repel the paramagnetic component while diamagnetic components such as N.sub.2 are generally unaffected and pass to the opposite side of the mechanical membrane.

Inventors:
Publication Date:
Research Org.:
National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1354819
Patent Number(s):
9,636,631
Application Number:
14/684,475
Assignee:
U.S. Department of Energy NETL
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Apr 13
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Maurice, David. Mechanical membrane for the separation of a paramagnetic constituent from a fluid. United States: N. p., 2017. Web.
Maurice, David. Mechanical membrane for the separation of a paramagnetic constituent from a fluid. United States.
Maurice, David. 2017. "Mechanical membrane for the separation of a paramagnetic constituent from a fluid". United States. doi:. https://www.osti.gov/servlets/purl/1354819.
@article{osti_1354819,
title = {Mechanical membrane for the separation of a paramagnetic constituent from a fluid},
author = {Maurice, David},
abstractNote = {The disclosure provides an apparatus and method for the separation of a paramagnetic component from a mixture using a mechanical membrane apparatus. The mechanical membrane comprises a supporting material having a plurality of pores where each pore is surrounded by a plurality of magnetic regions. The magnetic regions augment a magnetic field on one side of the supporting material while mitigating the field to near zero on the opposite side. In operation, a flow of fluid such as air comprising a paramagnetic component such as O.sub.2 is directed toward the mechanical membrane, and the paramagnetic component is typically attracted toward a magnetic field surrounding a pore while dimagnetic components such as N.sub.2 are generally repelled. As some portion of the fluid passes through the plurality of magnetic apertures to the opposite side of the mechanical membrane, the mechanical membrane generates a fluid enriched in the paramagnetic component. Alternately, the magnetic field may act to repel the paramagnetic component while diamagnetic components such as N.sub.2 are generally unaffected and pass to the opposite side of the mechanical membrane.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 5
}

Patent:

Save / Share:
  • Waste gases streams, particularly products of combustion contain quantities of nitrogen oxides which are damaging to the environment. Dissolving or absorbing these gases in an inert, nonmagnetic, absorber liquid provides a media which can then be passed through a high intensity magnetic field. The nitrogen oxides are subject to paramagnetic forces and thus migrate in the liquid to the poles of the magnet. Supersaturation of the nitrogen oxides near the vicinity of the poles causes the absorptive capacity of the liquid to be exceeded and the nitrogen oxides are thus stripped from the liquid. Gases such as carbon dioxide, carbonmore » monoxide, sulphur oxides, hydrogen sulphide, hydrogen chlorine, among many, are not paramagnetic and thus remain in the liquid, to be stripped by other means and the liquid reused.« less
  • An improved process for separating hydrogen from hydrocarbons. The process includes a pressure swing adsorption step, a compression/cooling step and a membrane separation step. The membrane step relies on achieving a methane/hydrogen selectivity of at least about 2.5 under the conditions of the process.
  • Processes for providing improved methane removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved methane removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of methane over hydrogen, and capable of exhibiting a methane/hydrogen selectivity of at least about 2.5 under the process conditions.
  • Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to bemore » operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.« less